Suppr超能文献

CRISPR/Cas9 通过侧向扩散寻找邻近原间隔基序。

CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion.

机构信息

Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.

Center for Genome Engineering, Institute for Basic Science, Seoul, Korea.

出版信息

EMBO J. 2019 Feb 15;38(4). doi: 10.15252/embj.201899466. Epub 2018 Dec 20.

Abstract

The Streptococcus pyogenes CRISPR/Cas9 (SpCas9) nuclease has been widely applied in genetic engineering. Despite its importance in genome editing, aspects of the precise molecular mechanism of Cas9 activity remain ambiguous. In particular, because of the lack of a method with high spatio-temporal resolution, transient interactions between Cas9 and DNA could not be reliably investigated. It therefore remains controversial how Cas9 searches for protospacer adjacent motif (PAM) sequences. We have developed single-molecule Förster resonance energy transfer (smFRET) assays to monitor transient interactions of Cas9 and DNA in real time. Our study shows that Cas9 interacts with the PAM sequence weakly, yet probing neighboring sequences via facilitated diffusion. This dynamic mode of interactions leads to translocation of Cas9 to another PAM nearby and consequently an on-target sequence. We propose a model in which lateral diffusion competes with three-dimensional diffusion and thus is involved in PAM finding and consequently on-target binding. Our results imply that the neighboring sequences can be very important when choosing a target in genetic engineering applications.

摘要

化脓性链球菌 CRISPR/Cas9(SpCas9)核酸酶已被广泛应用于基因工程。尽管它在基因组编辑中很重要,但 Cas9 活性的精确分子机制的某些方面仍然不清楚。特别是,由于缺乏具有高时空分辨率的方法,Cas9 与 DNA 之间的瞬时相互作用无法被可靠地研究。因此,Cas9 如何搜索原间隔序列邻近基序(PAM)序列仍然存在争议。我们开发了单分子Förster 共振能量转移(smFRET)测定法,以实时监测 Cas9 和 DNA 的瞬时相互作用。我们的研究表明,Cas9 与 PAM 序列弱相互作用,但通过易化扩散探测相邻序列。这种动态相互作用模式导致 Cas9 向附近的另一个 PAM 转移,从而与靶序列结合。我们提出了一个模型,其中侧向扩散与三维扩散竞争,因此参与 PAM 寻找和靶序列结合。我们的结果表明,在基因工程应用中选择靶标时,相邻序列可能非常重要。

相似文献

1
CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion.
EMBO J. 2019 Feb 15;38(4). doi: 10.15252/embj.201899466. Epub 2018 Dec 20.
2
Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
Nature. 2018 Apr 5;556(7699):57-63. doi: 10.1038/nature26155. Epub 2018 Feb 28.
3
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
Nature. 2014 Mar 6;507(7490):62-7. doi: 10.1038/nature13011. Epub 2014 Jan 29.
4
Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
PLoS Biol. 2019 Oct 11;17(10):e3000496. doi: 10.1371/journal.pbio.3000496. eCollection 2019 Oct.
5
Engineered dual selection for directed evolution of SpCas9 PAM specificity.
Nat Commun. 2021 Jan 13;12(1):349. doi: 10.1038/s41467-020-20650-x.
6
Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.
7
Bidirectional Degradation of DNA Cleavage Products Catalyzed by CRISPR/Cas9.
J Am Chem Soc. 2018 Mar 14;140(10):3743-3750. doi: 10.1021/jacs.7b13050. Epub 2018 Feb 20.
8
SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power.
Trends Genet. 2020 Aug;36(8):546-548. doi: 10.1016/j.tig.2020.05.001. Epub 2020 May 23.
9
Minimal PAM specificity of a highly similar SpCas9 ortholog.
Sci Adv. 2018 Oct 24;4(10):eaau0766. doi: 10.1126/sciadv.aau0766. eCollection 2018 Oct.
10
Cas9 specifies functional viral targets during CRISPR-Cas adaptation.
Nature. 2015 Mar 12;519(7542):199-202. doi: 10.1038/nature14245. Epub 2015 Feb 18.

引用本文的文献

1
ADARs: pleiotropy in function, versatility in application.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf672.
2
Mechanism of Cas9 inhibition by AcrIIA11.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf318.
3
Simulations predict stronger CRISPRi transcriptional repression in plants for identical than heterogeneous gRNA target sites.
Synth Biol (Oxf). 2025 Apr 18;10(1):ysae020. doi: 10.1093/synbio/ysae020. eCollection 2025.
6
CRISPR-Cas12a bends DNA to destabilize base pairs during target interrogation.
Nucleic Acids Res. 2025 Jan 11;53(2). doi: 10.1093/nar/gkae1192.
8
CRISPR-Cas12a bends DNA to destabilize base pairs during target interrogation.
bioRxiv. 2024 Jul 31:2024.07.31.606079. doi: 10.1101/2024.07.31.606079.
9
Harnessing the evolving CRISPR/Cas9 for precision oncology.
J Transl Med. 2024 Aug 8;22(1):749. doi: 10.1186/s12967-024-05570-4.
10
Conformational dynamics of CasX (Cas12e) in mediating DNA cleavage revealed by single-molecule FRET.
Nucleic Acids Res. 2024 Aug 27;52(15):9014-9027. doi: 10.1093/nar/gkae604.

本文引用的文献

1
Assembly and Translocation of a CRISPR-Cas Primed Acquisition Complex.
Cell. 2018 Nov 1;175(4):934-946.e15. doi: 10.1016/j.cell.2018.09.039. Epub 2018 Oct 18.
2
Kinetics of dCas9 target search in .
Science. 2017 Sep 29;357(6358):1420-1424. doi: 10.1126/science.aah7084. Epub 2017 Sep 28.
4
Applications of CRISPR technologies in research and beyond.
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.
5
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.
Science. 2016 Aug 5;353(6299):aad5147. doi: 10.1126/science.aad5147.
6
CRISPR-Cas adaptation: insights into the mechanism of action.
Nat Rev Microbiol. 2016 Feb;14(2):67-76. doi: 10.1038/nrmicro.2015.14. Epub 2016 Jan 11.
7
CRISPR-Cas immunity in prokaryotes.
Nature. 2015 Oct 1;526(7571):55-61. doi: 10.1038/nature15386.
8
An updated evolutionary classification of CRISPR-Cas systems.
Nat Rev Microbiol. 2015 Nov;13(11):722-36. doi: 10.1038/nrmicro3569. Epub 2015 Sep 28.
9
A Dynamic Search Process Underlies MicroRNA Targeting.
Cell. 2015 Jul 2;162(1):96-107. doi: 10.1016/j.cell.2015.06.032.
10
A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture.
Nucleic Acids Res. 2015 Mar 31;43(6):3389-404. doi: 10.1093/nar/gkv137. Epub 2015 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验