Suppr超能文献

通过微妙的几何变化戏剧性地电子干扰 Cu 中心。

Dramatic Electronic Perturbations of Cu Centers via Subtle Geometric Changes.

机构信息

Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario and CONICET , 2000 Rosario , Argentina.

Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.

出版信息

J Am Chem Soc. 2019 Jan 23;141(3):1373-1381. doi: 10.1021/jacs.8b12335. Epub 2019 Jan 8.

Abstract

Cu is a binuclear copper site acting as electron entry port in terminal heme-copper oxidases. In the oxidized form, Cu is a mixed valence pair whose electronic structure can be described using a potential energy surface with two minima, σ* and π, that are variably populated at room temperature. We report that mutations in the first and second coordination spheres of the binuclear metallocofactor can be combined in an additive manner to tune the energy gap and, thus, the relative populations of the two lowest-lying states. A series of designed mutants span σ*/π energy gaps ranging from 900 to 13 cm. The smallest gap corresponds to a variant with an effectively degenerate ground state. All engineered sites preserve the mixed-valence character of this metal center and the electron transfer functionality. An increase of the Cu-Cu distance less than 0.06 Å modifies the σ*/π energy gap by almost 2 orders of magnitude, with longer distances eliciting a larger population of the π state. This scenario offers a stark contrast to synthetic systems, as model compounds require a lengthening of 0.5 Å in the Cu-Cu distance to stabilize the π state. These findings show that the tight control of the protein environment allows drastic perturbations in the electronic structure of Cu sites with minor geometric changes.

摘要

铜是双核铜位点,作为末端血红素-铜氧化酶中的电子入口。在氧化形式下,铜是一个混合价对,其电子结构可以用一个具有两个势能最低点的势能面来描述,σ* 和 π,在室温下它们的电子分布是可变量。我们报告说,在双核金属辅因子的第一和第二配位球中的突变可以以加和的方式组合,以调节能隙,从而调节两个最低能态的相对分布。一系列设计的突变体跨越 σ*/π 能隙范围从 900 到 13 cm。最小的能隙对应于一个有效简并基态的变体。所有工程化的位点都保留了这个金属中心的混合价特征和电子转移功能。铜-铜距离的减小小于 0.06 Å,可以将 σ*/π 能隙改变近 2 个数量级,距离越长,π 态的分布越大。这种情况与合成系统形成鲜明对比,因为模型化合物需要铜-铜距离延长 0.5 Å 才能稳定 π 态。这些发现表明,蛋白质环境的严格控制允许在铜位点的电子结构中进行剧烈的扰动,而几何变化很小。

相似文献

1
Dramatic Electronic Perturbations of Cu Centers via Subtle Geometric Changes.
J Am Chem Soc. 2019 Jan 23;141(3):1373-1381. doi: 10.1021/jacs.8b12335. Epub 2019 Jan 8.
4
Time-resolved generation of membrane potential by ba cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and O states.
Biochim Biophys Acta Bioenerg. 2017 Nov;1858(11):915-926. doi: 10.1016/j.bbabio.2017.08.007. Epub 2017 Aug 12.
5
Water-soluble, recombinant CuA-domain of the cytochrome ba3 subunit II from Thermus thermophilus.
Biochemistry. 1996 Mar 19;35(11):3387-95. doi: 10.1021/bi9525839.
6
Molecular genetic and protein chemical characterization of the cytochrome ba3 from Thermus thermophilus HB8.
J Biol Chem. 1995 Sep 1;270(35):20345-58. doi: 10.1074/jbc.270.35.20345.
9
Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu(A) Sites of Cytochrome c Oxidase.
Angew Chem Int Ed Engl. 2015 Aug 10;54(33):9555-9. doi: 10.1002/anie.201504188. Epub 2015 Jun 26.
10
Axial interactions in the mixed-valent CuA active site and role of the axial methionine in electron transfer.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14658-63. doi: 10.1073/pnas.1314242110. Epub 2013 Aug 20.

引用本文的文献

1
The mitochondrial Cu transporter PiC2 (SLC25A3) is a target of MTF1 and contributes to the development of skeletal muscle .
Front Mol Biosci. 2022 Nov 9;9:1037941. doi: 10.3389/fmolb.2022.1037941. eCollection 2022.
2
Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
Chem Rev. 2022 Jul 27;122(14):11974-12045. doi: 10.1021/acs.chemrev.2c00106. Epub 2022 Jul 11.
4
Mechanistic basis of substrate-O coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19178-19189. doi: 10.1073/pnas.2004277117. Epub 2020 Jul 28.
5
A Binuclear Cu Center Designed in an All α-Helical Protein Scaffold.
J Am Chem Soc. 2020 Aug 12;142(32):13779-13794. doi: 10.1021/jacs.0c04226. Epub 2020 Jul 29.
6
Biological and Bioinspired Inorganic N-N Bond-Forming Reactions.
Chem Rev. 2020 Jun 24;120(12):5252-5307. doi: 10.1021/acs.chemrev.9b00629. Epub 2020 Feb 28.

本文引用的文献

1
Walking the seven lines: binuclear copper A in cytochrome c oxidase and nitrous oxide reductase.
J Biol Inorg Chem. 2018 Jan;23(1):27-39. doi: 10.1007/s00775-017-1510-z. Epub 2017 Dec 7.
2
Tuning of Enthalpic/Entropic Parameters of a Protein Redox Center through Manipulation of the Electronic Partition Function.
J Am Chem Soc. 2017 Jul 26;139(29):9803-9806. doi: 10.1021/jacs.7b05199. Epub 2017 Jul 11.
3
Design of a single protein that spans the entire 2-V range of physiological redox potentials.
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):262-7. doi: 10.1073/pnas.1515897112. Epub 2015 Dec 2.
4
Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu(A) Sites of Cytochrome c Oxidase.
Angew Chem Int Ed Engl. 2015 Aug 10;54(33):9555-9. doi: 10.1002/anie.201504188. Epub 2015 Jun 26.
5
Control of the electronic ground state on an electron-transfer copper site by second-sphere perturbations.
Angew Chem Int Ed Engl. 2014 Jun 10;53(24):6188-92. doi: 10.1002/anie.201402083. Epub 2014 Apr 28.
6
Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers.
Chem Rev. 2014 Apr 23;114(8):4366-469. doi: 10.1021/cr400479b.
7
Axial interactions in the mixed-valent CuA active site and role of the axial methionine in electron transfer.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14658-63. doi: 10.1073/pnas.1314242110. Epub 2013 Aug 20.
8
Alternative ground states enable pathway switching in biological electron transfer.
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17348-53. doi: 10.1073/pnas.1204251109. Epub 2012 Oct 10.
9
A fully delocalized mixed-valence bis-μ(thiolato) dicopper complex: a structural and functional model of the biological CuA center.
Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5662-6. doi: 10.1002/anie.201100605. Epub 2011 May 9.
10
Rationally tuning the reduction potential of a single cupredoxin beyond the natural range.
Nature. 2009 Nov 5;462(7269):113-6. doi: 10.1038/nature08551.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验