Suppr超能文献

亨廷顿病小鼠模型中 ipRGC 的变性在运动障碍前破坏非视觉行为。

Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment.

机构信息

Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 115, Taiwan.

Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and.

出版信息

J Neurosci. 2019 Feb 20;39(8):1505-1524. doi: 10.1523/JNEUROSCI.0571-18.2018. Epub 2018 Dec 26.

Abstract

Intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the photopigment melanopsin, are photosensitive neurons in the retina and are essential for non-image-forming functions, circadian photoentrainment, and pupillary light reflexes. Five subtypes of ipRGCs (M1-M5) have been identified in mice. Although ipRGCs are spared in several forms of inherited blindness, they are affected in Alzheimer's disease and aging, which are associated with impaired circadian rhythms. Huntington's disease (HD) is an autosomal neurodegenerative disease caused by the expansion of a CAG repeat in the gene. In addition to motor function impairment, HD mice also show impaired circadian rhythms and loss of ipRGC. Here, we found that, in HD mouse models (R6/2 and N171-82Q male mice), the expression of melanopsin was reduced before the onset of motor deficits. The expression of retinal T-box brain 2, a transcription factor essential for ipRGCs, was associated with the survival of ipRGCs. The number of M1 ipRGCs in R6/2 male mice was reduced due to apoptosis, whereas non-M1 ipRGCs were relatively resilient to HD progression. Most importantly, the reduced innervations of M1 ipRGCs, which was assessed by X-gal staining in R6/2-OPN4 male mice, contributed to the diminished light-induced c-fos and vasoactive intestinal peptide in the suprachiasmatic nuclei (SCN), which may explain the impaired circadian photoentrainment in HD mice. Collectively, our results show that M1 ipRGCs were susceptible to the toxicity caused by mutant Huntingtin. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and disrupted circadian regulation during HD progression. Circadian disruption is a common nonmotor symptom of Huntington's disease (HD). In addition to the molecular defects in the suprachiasmatic nuclei (SCN), the cause of circadian disruption in HD remains to be further explored. We hypothesized that ipRGCs, by integrating light input to the SCN, participate in the circadian regulation in HD mice. We report early reductions in melanopsin in two mouse models of HD, R6/2, and N171-82Q. Suppression of retinal T-box brain 2, a transcription factor essential for ipRGCs, by mutant Huntingtin might mediate the reduced number of ipRGCs. Importantly, M1 ipRGCs showed higher susceptibility than non-M1 ipRGCs in R6/2 mice. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and the circadian abnormality during HD progression.

摘要

内在光敏视网膜神经节细胞(ipRGCs)表达感光色素黑视素,是视网膜中的感光神经元,对于非成像功能、昼夜节律光适应和瞳孔光反射至关重要。在小鼠中已经鉴定出五种 ipRGC 亚型(M1-M5)。尽管几种遗传性失明形式中不会影响到 ipRGCs,但在阿尔茨海默病和衰老中会受到影响,这与昼夜节律紊乱有关。亨廷顿病(HD)是一种常染色体神经退行性疾病,由基因中 CAG 重复扩展引起。除了运动功能障碍外,HD 小鼠还表现出昼夜节律紊乱和 ipRGC 丧失。在这里,我们发现,在 HD 小鼠模型(R6/2 和 N171-82Q 雄性小鼠)中,运动缺陷发作前黑视素表达减少。视网膜 T 盒脑 2(ipRGCs 生存所必需的转录因子)的表达与 ipRGC 的存活有关。由于凋亡,R6/2 雄性小鼠中 M1 ipRGC 的数量减少,而非 M1 ipRGC 对 HD 进展相对有弹性。最重要的是,通过 X-gal 染色在 R6/2-OPN4 雄性小鼠中评估的 M1 ipRGC 的减少神经支配,导致视交叉上核(SCN)中光诱导的 c-fos 和血管活性肠肽减少,这可能解释了 HD 小鼠中昼夜节律光适应的受损。总的来说,我们的结果表明 M1 ipRGCs 容易受到突变亨廷顿蛋白的毒性影响。M1 ipRGCs 的损伤导致 ipRGC-SCN 途径的早期退化,并在 HD 进展过程中破坏了昼夜节律调节。昼夜节律紊乱是亨廷顿病(HD)的常见非运动症状。除了视交叉上核(SCN)中的分子缺陷外,HD 中昼夜节律紊乱的原因仍有待进一步探索。我们假设 ipRGCs 通过整合光输入到 SCN 参与 HD 小鼠的昼夜节律调节。我们报告了两种 HD 小鼠模型(R6/2 和 N171-82Q)中黑视素的早期减少。突变亨廷顿蛋白对视网膜 T 盒脑 2 的抑制,该转录因子对 ipRGCs 至关重要,可能介导 ipRGC 数量的减少。重要的是,R6/2 小鼠中的 M1 ipRGCs 比非 M1 ipRGCs 更易受影响。M1 ipRGCs 的损伤导致 ipRGC-SCN 途径的早期退化,并在 HD 进展过程中导致昼夜节律异常。

相似文献

1
Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment.
J Neurosci. 2019 Feb 20;39(8):1505-1524. doi: 10.1523/JNEUROSCI.0571-18.2018. Epub 2018 Dec 26.
3
Divergent projection patterns of M1 ipRGC subtypes.
J Comp Neurol. 2018 Sep 1;526(13):2010-2018. doi: 10.1002/cne.24469. Epub 2018 Aug 2.
4
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
J Neurosci. 2016 Jul 6;36(27):7184-97. doi: 10.1523/JNEUROSCI.3500-15.2016.
5
Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs.
Nature. 2011 Jul 17;476(7358):92-5. doi: 10.1038/nature10206.
9
Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks.
PLoS One. 2016 Dec 16;11(12):e0168651. doi: 10.1371/journal.pone.0168651. eCollection 2016.
10
The rat retina has five types of ganglion-cell photoreceptors.
Exp Eye Res. 2015 Jan;130:17-28. doi: 10.1016/j.exer.2014.11.010. Epub 2014 Nov 18.

引用本文的文献

1
The Retinal Dopaminergic Circuit as a Biomarker for Huntington's and Alzheimer's Diseases.
Int J Mol Sci. 2025 Jun 10;26(12):5532. doi: 10.3390/ijms26125532.
2
Exploring the relationship between melanopsin gene variants, sleep, and markers of brain health.
Alzheimers Dement (Amst). 2025 Jan 16;17(1):e70056. doi: 10.1002/dad2.70056. eCollection 2025 Jan-Mar.
3
Light-eye-body axis: exploring the network from retinal illumination to systemic regulation.
Theranostics. 2025 Jan 2;15(4):1496-1523. doi: 10.7150/thno.106589. eCollection 2025.
4
Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review.
Biomedicines. 2024 Aug 6;12(8):1777. doi: 10.3390/biomedicines12081777.
8
Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders?
Front Cell Neurosci. 2023 Jun 26;17:1188306. doi: 10.3389/fncel.2023.1188306. eCollection 2023.
9
Sleep Disorders and Circadian Disruption in Huntington's Disease.
J Huntingtons Dis. 2023;12(2):121-131. doi: 10.3233/JHD-230576.
10
Sleep and Circadian Rhythm Dysfunction in Animal Models of Huntington's Disease.
J Huntingtons Dis. 2023;12(2):133-148. doi: 10.3233/JHD-230574.

本文引用的文献

1
Strict Independence of Parallel and Poly-synaptic Axon-Target Matching during Visual Reflex Circuit Assembly.
Cell Rep. 2017 Dec 12;21(11):3049-3064. doi: 10.1016/j.celrep.2017.11.044.
2
Retinal Ganglion Cells and Circadian Rhythms in Alzheimer's Disease, Parkinson's Disease, and Beyond.
Front Neurol. 2017 May 4;8:162. doi: 10.3389/fneur.2017.00162. eCollection 2017.
3
Peripherin diverts ciliary ectosome release to photoreceptor disc morphogenesis.
J Cell Biol. 2017 May 1;216(5):1227-1229. doi: 10.1083/jcb.201703020. Epub 2017 Apr 11.
5
Architecture of retinal projections to the central circadian pacemaker.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):6047-52. doi: 10.1073/pnas.1523629113. Epub 2016 May 9.
6
Melanopsin retinal ganglion cell loss in Alzheimer disease.
Ann Neurol. 2016 Jan;79(1):90-109. doi: 10.1002/ana.24548. Epub 2015 Dec 18.
8
Axonal spread of neuroinvasive viral infections.
Trends Microbiol. 2015 May;23(5):283-8. doi: 10.1016/j.tim.2015.01.002. Epub 2015 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验