Suppr超能文献

光遗传学描绘 PC12 细胞分化中的受体酪氨酸激酶亚回路。

Optogenetic Delineation of Receptor Tyrosine Kinase Subcircuits in PC12 Cell Differentiation.

机构信息

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.

出版信息

Cell Chem Biol. 2019 Mar 21;26(3):400-410.e3. doi: 10.1016/j.chembiol.2018.11.004. Epub 2018 Dec 27.

Abstract

Nerve growth factor elicits signaling outcomes by interacting with both its high-affinity receptor, TrkA, and its low-affinity receptor, p75NTR. Although these two receptors can regulate distinct cellular outcomes, they both activate the extracellular-signal-regulated kinase pathway upon nerve growth factor stimulation. To delineate TrkA subcircuits in PC12 cell differentiation, we developed an optogenetic system whereby light was used to specifically activate TrkA signaling in the absence of nerve growth factor. By using tyrosine mutants of the optogenetic TrkA in combination with pathway-specific pharmacological inhibition, we find that Y490 and Y785 each contributes to PC12 cell differentiation through the extracellular-signal-regulated kinase pathway in an additive manner. Optogenetic activation of TrkA eliminates the confounding effect of p75NTR and other potential off-target effects of the ligand. This approach can be generalized for the mechanistic study of other receptor-mediated signaling pathways.

摘要

神经生长因子通过与其高亲和力受体 TrkA 和低亲和力受体 p75NTR 相互作用,引发信号转导。虽然这两种受体可以调节不同的细胞结果,但它们在神经生长因子刺激下都能激活细胞外信号调节激酶途径。为了描绘 PC12 细胞分化中 TrkA 的亚电路,我们开发了一种光遗传学系统,该系统利用光来特异性地激活无神经生长因子存在时的 TrkA 信号。通过使用光遗传学 TrkA 的酪氨酸突变体结合通路特异性药理学抑制,我们发现 Y490 和 Y785 各自通过细胞外信号调节激酶途径以累加的方式促进 PC12 细胞分化。TrkA 的光遗传学激活消除了 p75NTR 的混杂效应和配体的其他潜在脱靶效应。这种方法可推广用于其他受体介导的信号转导途径的机制研究。

相似文献

1
Optogenetic Delineation of Receptor Tyrosine Kinase Subcircuits in PC12 Cell Differentiation.
Cell Chem Biol. 2019 Mar 21;26(3):400-410.e3. doi: 10.1016/j.chembiol.2018.11.004. Epub 2018 Dec 27.
7
NGF activates the phosphorylation of MAP1B by GSK3beta through the TrkA receptor and not the p75(NTR) receptor.
J Neurochem. 2003 Nov;87(4):935-46. doi: 10.1046/j.1471-4159.2003.02062.x.
8
p53 is required for nerve growth factor-mediated differentiation of PC12 cells via regulation of TrkA levels.
Cell Death Differ. 2006 Dec;13(12):2118-28. doi: 10.1038/sj.cdd.4401972. Epub 2006 May 26.
10
Optical Activation of TrkA Signaling.
ACS Synth Biol. 2018 Jul 20;7(7):1685-1693. doi: 10.1021/acssynbio.8b00126. Epub 2018 Jul 12.

引用本文的文献

1
Optogenetic enzymes: A deep dive into design and impact.
Curr Opin Struct Biol. 2025 Aug 5;94:103126. doi: 10.1016/j.sbi.2025.103126.
2
Repurposing salicylic acid as a versatile inducer of proximity.
Nat Chem Biol. 2025 Jun 13. doi: 10.1038/s41589-025-01918-z.
3
Optogenetic engineering for ion channel modulation.
Curr Opin Chem Biol. 2025 Apr;85:102569. doi: 10.1016/j.cbpa.2025.102569. Epub 2025 Feb 3.
4
Alternating Cellular Functions by Optogenetic Control of Organelles.
Methods Mol Biol. 2025;2840:175-183. doi: 10.1007/978-1-0716-4047-0_13.
5
Light-Inducible Activation of TrkA for Probing Chronic Pain in Mice.
ACS Chem Biol. 2024 Jul 19;19(7):1626-1637. doi: 10.1021/acschembio.4c00300. Epub 2024 Jun 18.
6
Optogenetics in Pancreatic Islets: Actuators and Effects.
Diabetes. 2024 Oct 1;73(10):1566-1582. doi: 10.2337/db23-1022.
7
PLC-γ-Ca pathway regulates axonal TrkB endocytosis and is required for long-distance propagation of BDNF signaling.
Front Mol Neurosci. 2024 Apr 10;17:1009404. doi: 10.3389/fnmol.2024.1009404. eCollection 2024.
8
LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics.
Biophys Physicobiol. 2023 Jun 6;20(2):e200027. doi: 10.2142/biophysico.bppb-v20.0027. eCollection 2023.
10
Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts.
Nat Commun. 2022 Jul 25;13(1):4303. doi: 10.1038/s41467-022-31970-5.

本文引用的文献

1
Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics.
Science. 2018 Feb 9;359(6376):679-684. doi: 10.1126/science.aaq1144.
2
Applications of Optobiology in Intact Cells and Multicellular Organisms.
J Mol Biol. 2017 Oct 13;429(20):2999-3017. doi: 10.1016/j.jmb.2017.08.015. Epub 2017 Sep 4.
3
A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.
Nat Biotechnol. 2017 Sep;35(9):864-871. doi: 10.1038/nbt.3909. Epub 2017 Jun 26.
4
Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain.
Nat Methods. 2017 May;14(5):495-503. doi: 10.1038/nmeth.4234. Epub 2017 Apr 3.
5
The Spatiotemporal Limits of Developmental Erk Signaling.
Dev Cell. 2017 Jan 23;40(2):185-192. doi: 10.1016/j.devcel.2016.12.002.
6
TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.
Development. 2017 Jan 15;144(2):345-355. doi: 10.1242/dev.139238. Epub 2016 Dec 19.
7
Reversible optogenetic control of kinase activity during differentiation and embryonic development.
Development. 2016 Nov 1;143(21):4085-4094. doi: 10.1242/dev.140889. Epub 2016 Oct 3.
8
Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials.
ACS Nano. 2016 Apr 26;10(4):3881-3885. doi: 10.1021/acsnano.6b02284. Epub 2016 Apr 14.
9
An Optogenetic Method to Modulate Cell Contractility during Tissue Morphogenesis.
Dev Cell. 2015 Dec 7;35(5):646-660. doi: 10.1016/j.devcel.2015.10.020.
10
Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.
Dev Cell. 2016 Jan 11;36(1):117-126. doi: 10.1016/j.devcel.2015.12.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验