Suppr超能文献

开发一种新型微生物传感器,用于在体监测大脑中谷氨酸的释放。

Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain.

机构信息

Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.

Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.

出版信息

Biosens Bioelectron. 2019 Apr 1;130:103-109. doi: 10.1016/j.bios.2019.01.049. Epub 2019 Jan 30.

Abstract

L- Glutamate is the main excitatory neurotransmitter in the central nervous system and hyperglutamatergic signaling is implicated in neurological and neurodegenerative diseases. Monitoring glutamate with a glutamate oxidase-based amperometric biosensor offers advantages such as high spatial and high temporal resolution. However, commercially-available glutamate biosensors are expensive and larger in size. Here, we report the development of 50 µm diameter biosensor for real-time monitoring of L-glutamate in vivo. A polymer, poly-o-phenylenediamine (PPD) layer was electropolymerized onto a 50 µm Pt wire to act as a permselective membrane. Then, glutamate oxidase entrapped in a biocompatible chitosan matrix was cast onto the microelectrode surface. Finally, ascorbate oxidase was coated to eliminate interferences from high levels of extracellular ascorbic acid present in brain tissue. L-glutamate measurements were performed amperometrically at an applied potential of 0.6 V vs Ag/AgCl. The biosensor exhibited a linear range from 5 to 150 μM, with a high sensitivity of 0.097 ± 0.001 nA/μM and one-week storage stability. The biosensor also showed a rapid steady state response to L-glutamate within 2 s, with a limit of detection of 0.044 μM. The biosensor was used successfully to detect stimulated glutamate in the subthalamic nucleus in brain slices and in vivo. Thus, this biosensor is appropriate for future neuroscience applications.

摘要

L-谷氨酸是中枢神经系统中的主要兴奋性神经递质,过度谷氨酸能信号与神经和神经退行性疾病有关。基于谷氨酸氧化酶的安培生物传感器监测谷氨酸具有高空间和高时间分辨率等优点。然而,市售的谷氨酸生物传感器昂贵且体积较大。在这里,我们报告了一种 50µm 直径的生物传感器的开发,用于实时监测体内的 L-谷氨酸。将聚邻苯二胺(PPD)层电聚合到 50µm 的 Pt 丝上,作为一种具有选择性的膜。然后,将包埋在生物相容性壳聚糖基质中的谷氨酸氧化酶涂覆到微电极表面。最后,涂覆抗坏血酸氧化酶以消除组织中存在的高水平细胞外抗坏血酸的干扰。L-谷氨酸的测量通过在 0.6 V 对 Ag/AgCl 的施加电位下进行安培测量来进行。该生物传感器的线性范围为 5 至 150µM,具有 0.097±0.001nA/µM 的高灵敏度和一周的存储稳定性。该生物传感器还表现出对 L-谷氨酸的快速稳定状态响应,在 2s 内达到稳定状态,检测限为 0.044µM。该生物传感器成功地用于检测脑切片和体内刺激的丘脑下核中的谷氨酸。因此,这种生物传感器适用于未来的神经科学应用。

相似文献

1
Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain.
Biosens Bioelectron. 2019 Apr 1;130:103-109. doi: 10.1016/j.bios.2019.01.049. Epub 2019 Jan 30.
2
A microelectrode biosensor for real time monitoring of L-glutamate release.
Anal Chim Acta. 2009 Jul 10;645(1-2):86-91. doi: 10.1016/j.aca.2009.04.048. Epub 2009 May 5.
3
A robust, state-of-the-art amperometric microbiosensor for glutamate detection.
Biosens Bioelectron. 2014 Nov 15;61:526-31. doi: 10.1016/j.bios.2014.04.054. Epub 2014 Jun 5.
5
A Detailed Model of Electroenzymatic Glutamate Biosensors To Aid in Sensor Optimization and in Applications in Vivo.
ACS Chem Neurosci. 2018 Feb 21;9(2):241-251. doi: 10.1021/acschemneuro.7b00262. Epub 2017 Nov 10.
6
Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments.
Biosens Bioelectron. 2014 Feb 15;52:397-402. doi: 10.1016/j.bios.2013.08.054. Epub 2013 Sep 11.

引用本文的文献

1
Enzyme-modified microelectrodes for measurement of glutamate: Characterization and applications.
Electroanalysis. 2025 Mar;37(3). doi: 10.1002/elan.12041. Epub 2025 Mar 17.
3
Enzymatic Polymer Brush Interfaces for Electrochemical Sensing in Biofluids.
ACS Appl Bio Mater. 2025 May 19;8(5):4008-4019. doi: 10.1021/acsabm.5c00146. Epub 2025 Apr 23.
4
Plasmonic Coupling for High-Sensitivity Detection of Low Molecular Weight Molecules.
Small Sci. 2024 Oct 9;5(1):2400382. doi: 10.1002/smsc.202400382. eCollection 2025 Jan.
6
Electrochemical detection of glutamate and histamine using redox-labeled stimuli-responsive polymer as a synthetic target receptor.
ACS Appl Polym Mater. 2024 May 24;6(10):5630-5641. doi: 10.1021/acsapm.4c00121. Epub 2024 May 10.
8
Improving Sensitivity and Longevity of In Vivo Glutamate Sensors with Electrodeposited NanoPt.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):40570-40580. doi: 10.1021/acsami.4c06692. Epub 2024 Jul 30.
10
Sensor-integrated brain-on-a-chip platforms: Improving the predictive validity in neurodegenerative research.
Bioeng Transl Med. 2023 Oct 18;9(3):e10604. doi: 10.1002/btm2.10604. eCollection 2024 May.

本文引用的文献

1
Functional biomaterials towards flexible electronics and sensors.
Biosens Bioelectron. 2018 Nov 15;119:237-251. doi: 10.1016/j.bios.2018.08.018. Epub 2018 Aug 14.
2
A Detailed Model of Electroenzymatic Glutamate Biosensors To Aid in Sensor Optimization and in Applications in Vivo.
ACS Chem Neurosci. 2018 Feb 21;9(2):241-251. doi: 10.1021/acschemneuro.7b00262. Epub 2017 Nov 10.
5
A robust, state-of-the-art amperometric microbiosensor for glutamate detection.
Biosens Bioelectron. 2014 Nov 15;61:526-31. doi: 10.1016/j.bios.2014.04.054. Epub 2014 Jun 5.
6
Polymer-based, flexible glutamate and lactate microsensors for in vivo applications.
Biosens Bioelectron. 2014 Nov 15;61:192-9. doi: 10.1016/j.bios.2014.05.014. Epub 2014 May 14.
7
Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments.
Biosens Bioelectron. 2014 Feb 15;52:397-402. doi: 10.1016/j.bios.2013.08.054. Epub 2013 Sep 11.
8
Immobilization method to preserve enzyme specificity in biosensors: consequences for brain glutamate detection.
Anal Chem. 2013 Feb 19;85(4):2507-15. doi: 10.1021/ac3035794. Epub 2013 Feb 7.
10
Excitotoxicity: bridge to various triggers in neurodegenerative disorders.
Eur J Pharmacol. 2013 Jan 5;698(1-3):6-18. doi: 10.1016/j.ejphar.2012.10.032. Epub 2012 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验