Suppr超能文献

信号动态控制果蝇早期胚胎中的细胞命运。

Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Dev Cell. 2019 Feb 11;48(3):361-370.e3. doi: 10.1016/j.devcel.2019.01.009.

Abstract

The Erk mitogen-activated protein kinase plays diverse roles in animal development. Its widespread reuse raises a conundrum: when a single kinase like Erk is activated, how does a developing cell know which fate to adopt? We combine optogenetic control with genetic perturbations to dissect Erk-dependent fates in the early Drosophila embryo. We find that Erk activity is sufficient to "posteriorize" 88% of the embryo, inducing gut endoderm-like gene expression and morphogenetic movements in all cells within this region. Gut endoderm fate adoption requires at least 1 h of signaling, whereas a 30-min Erk pulse specifies a distinct ectodermal cell type, intermediate neuroblasts. We find that the endoderm-ectoderm cell fate switch is controlled by the cumulative load of Erk activity, not the duration of a single pulse. The fly embryo thus harbors a classic example of dynamic control, where the temporal profile of Erk signaling selects between distinct physiological outcomes.

摘要

Erk 丝裂原活化蛋白激酶在动物发育中发挥多种作用。其广泛的重复使用提出了一个难题:当单一激酶如 Erk 被激活时,发育中的细胞如何知道要采用哪种命运?我们将光遗传学控制与遗传扰动相结合,以剖析早期果蝇胚胎中 Erk 依赖性命运。我们发现 Erk 活性足以“向后转化”88%的胚胎,在该区域的所有细胞中诱导肠内胚层样基因表达和形态发生运动。肠内胚层命运的采用至少需要 1 小时的信号传递,而 30 分钟的 Erk 脉冲则指定了一种不同的外胚层细胞类型,中间神经母细胞。我们发现,内胚层-外胚层细胞命运的转变是由 Erk 活性的累积负荷控制的,而不是由单个脉冲的持续时间控制的。因此,果蝇胚胎具有一个经典的动态控制范例,其中 Erk 信号的时间曲线在不同的生理结果之间进行选择。

相似文献

1
Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo.
Dev Cell. 2019 Feb 11;48(3):361-370.e3. doi: 10.1016/j.devcel.2019.01.009.
2
Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates.
Development. 2004 Nov;131(21):5277-86. doi: 10.1242/dev.01415. Epub 2004 Sep 29.
5
Initiation and early patterning of the endoderm.
Int Rev Cytol. 2001;203:383-446. doi: 10.1016/s0074-7696(01)03012-1.
6
Partially compromised specification causes stochastic effects on gut development in C. elegans.
Dev Biol. 2017 Jul 1;427(1):49-60. doi: 10.1016/j.ydbio.2017.05.007. Epub 2017 May 11.
7
Molecular regulation of Nodal signaling during mesendoderm formation.
Acta Biochim Biophys Sin (Shanghai). 2018 Jan 1;50(1):74-81. doi: 10.1093/abbs/gmx128.
9
Regionalisation of early head ectoderm is regulated by endoderm and prepatterns the orofacial epithelium.
Development. 2004 Oct;131(19):4797-806. doi: 10.1242/dev.01337. Epub 2004 Sep 1.
10
Indian hedgehog signaling in extraembryonic endoderm and ectoderm differentiation in ES embryoid bodies.
Mech Dev. 2000 Jun;94(1-2):117-32. doi: 10.1016/s0925-4773(00)00304-x.

引用本文的文献

2
A Frequency Domain Analysis of the Growth Factor-Driven Extra-Cellular-Regulated Kinase (ERK) Pathway.
Biology (Basel). 2025 Apr 5;14(4):374. doi: 10.3390/biology14040374.
3
Optogenetic control of Nodal signaling patterns.
Development. 2025 May 1;152(9). doi: 10.1242/dev.204506.
4
Temporal dose inversion properties of adaptive biomolecular circuits.
bioRxiv. 2025 Feb 11:2025.02.10.636967. doi: 10.1101/2025.02.10.636967.
7
Transient frequency preference responses in cell signaling systems.
NPJ Syst Biol Appl. 2024 Aug 11;10(1):86. doi: 10.1038/s41540-024-00413-w.
8
Low-frequency ERK and Akt activity dynamics are predictive of stochastic cell division events.
NPJ Syst Biol Appl. 2024 Jun 4;10(1):65. doi: 10.1038/s41540-024-00389-7.
10
Oncogenic Kras induces spatiotemporally specific tissue deformation through converting pulsatile into sustained ERK activation.
Nat Cell Biol. 2024 Jun;26(6):859-867. doi: 10.1038/s41556-024-01413-y. Epub 2024 Apr 30.

本文引用的文献

3
Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli.
Cell Syst. 2018 Jun 27;6(6):655-663.e5. doi: 10.1016/j.cels.2018.05.002. Epub 2018 May 30.
4
Linear Integration of ERK Activity Predominates over Persistence Detection in Fra-1 Regulation.
Cell Syst. 2017 Dec 27;5(6):549-563.e5. doi: 10.1016/j.cels.2017.10.019. Epub 2017 Nov 29.
5
Tracing Information Flow from Erk to Target Gene Induction Reveals Mechanisms of Dynamic and Combinatorial Control.
Mol Cell. 2017 Sep 7;67(5):757-769.e5. doi: 10.1016/j.molcel.2017.07.016. Epub 2017 Aug 17.
6
Decoding temporal interpretation of the morphogen Bicoid in the early embryo.
Elife. 2017 Jul 10;6:e26258. doi: 10.7554/eLife.26258.
7
Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo.
Rouxs Arch Dev Biol. 1986 Jul;195(5):302-317. doi: 10.1007/BF00376063.
8
Divergent effects of intrinsically active MEK variants on developmental Ras signaling.
Nat Genet. 2017 Mar;49(3):465-469. doi: 10.1038/ng.3780. Epub 2017 Feb 6.
9
The Spatiotemporal Limits of Developmental Erk Signaling.
Dev Cell. 2017 Jan 23;40(2):185-192. doi: 10.1016/j.devcel.2016.12.002.
10
Pulse-Width Modulation of Optogenetic Photo-Stimulation Intensity for Application to Full-Implantable Light Sources.
IEEE Trans Biomed Circuits Syst. 2017 Feb;11(1):28-34. doi: 10.1109/TBCAS.2016.2577042. Epub 2016 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验