Suppr超能文献

人工智能在解读肺功能测试方面优于肺病专家。

Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests.

机构信息

Respiratory Medicine, University Hospital Leuven, Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.

Cochin Hospital, AP-HP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.

出版信息

Eur Respir J. 2019 Apr 11;53(4). doi: 10.1183/13993003.01660-2018. Print 2019 Apr.

Abstract

The interpretation of pulmonary function tests (PFTs) to diagnose respiratory diseases is built on expert opinion that relies on the recognition of patterns and the clinical context for detection of specific diseases. In this study, we aimed to explore the accuracy and interrater variability of pulmonologists when interpreting PFTs compared with artificial intelligence (AI)-based software that was developed and validated in more than 1500 historical patient cases.120 pulmonologists from 16 European hospitals evaluated 50 cases with PFT and clinical information, resulting in 6000 independent interpretations. The AI software examined the same data. American Thoracic Society/European Respiratory Society guidelines were used as the gold standard for PFT pattern interpretation. The gold standard for diagnosis was derived from clinical history, PFT and all additional tests.The pattern recognition of PFTs by pulmonologists (senior 73%, junior 27%) matched the guidelines in 74.4±5.9% of the cases (range 56-88%). The interrater variability of κ=0.67 pointed to a common agreement. Pulmonologists made correct diagnoses in 44.6±8.7% of the cases (range 24-62%) with a large interrater variability (κ=0.35). The AI-based software perfectly matched the PFT pattern interpretations (100%) and assigned a correct diagnosis in 82% of all cases (p<0.0001 for both measures).The interpretation of PFTs by pulmonologists leads to marked variations and errors. AI-based software provides more accurate interpretations and may serve as a powerful decision support tool to improve clinical practice.

摘要

肺功能测试(PFT)的解读用于诊断呼吸疾病,其依据是专家意见,即依赖于对模式的识别以及对特定疾病的临床背景的检测。在这项研究中,我们旨在探索与基于人工智能(AI)的软件相比,肺科医生在解读 PFT 时的准确性和组内变异性,该软件是在超过 1500 例历史患者病例中开发和验证的。16 家欧洲医院的 200 名肺科医生评估了 50 例具有 PFT 和临床信息的病例,得出了 6000 次独立解读。AI 软件检查了相同的数据。美国胸科学会/欧洲呼吸学会指南被用作 PFT 模式解读的金标准。诊断的金标准来自临床病史、PFT 和所有其他测试。肺科医生(高级医生占 73%,初级医生占 27%)对 PFT 的模式识别在 74.4±5.9%的病例中与指南相符(范围为 56-88%)。κ=0.67 的组内变异性表明存在共同协议。肺科医生在 44.6±8.7%的病例中做出了正确的诊断(范围为 24-62%),组内变异性较大(κ=0.35)。基于 AI 的软件完全匹配 PFT 模式解读(100%),并在所有病例中正确诊断了 82%的病例(这两种测量方法的 p 值均<0.0001)。肺科医生对 PFT 的解读导致明显的变化和错误。基于 AI 的软件提供了更准确的解读,并可能作为一种强大的决策支持工具,以改善临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验