Suppr超能文献

PINK1抑制局部蛋白质合成以限制有害线粒体DNA突变的传播。

PINK1 Inhibits Local Protein Synthesis to Limit Transmission of Deleterious Mitochondrial DNA Mutations.

作者信息

Zhang Yi, Wang Zong-Heng, Liu Yi, Chen Yong, Sun Nuo, Gucek Marjan, Zhang Fan, Xu Hong

机构信息

National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.

National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.

出版信息

Mol Cell. 2019 Mar 21;73(6):1127-1137.e5. doi: 10.1016/j.molcel.2019.01.013. Epub 2019 Feb 13.

Abstract

We have previously proposed that selective inheritance, the limited transmission of damaging mtDNA mutations from mother to offspring, is based on replication competition in Drosophila melanogaster. This model, which stems from our observation that wild-type mitochondria propagate much more vigorously in the fly ovary than mitochondria carrying fitness-impairing mutations, implies that germ cells recognize the fitness of individual mitochondria and selectively boost the propagation of healthy ones. Here, we demonstrate that the protein kinase PINK1 preferentially accumulates on mitochondria enriched for a deleterious mtDNA mutation. PINK1 phosphorylates Larp to inhibit protein synthesis on the mitochondrial outer membrane. Impaired local translation on defective mitochondria in turn limits the replication of their mtDNA and hence the transmission of deleterious mutations to the offspring. Our work confirms that selective inheritance occurs at the organelle level during Drosophila oogenesis and provides molecular entry points to test this model in other systems.

摘要

我们之前提出,选择性遗传,即有害的线粒体DNA(mtDNA)突变从母亲到后代的有限传递,是基于果蝇中的复制竞争。该模型源于我们的观察,即野生型线粒体在果蝇卵巢中的增殖比携带影响适应性突变的线粒体更为活跃,这意味着生殖细胞能够识别单个线粒体的适应性,并选择性地促进健康线粒体的增殖。在这里,我们证明蛋白激酶PINK1优先积累在富含有害mtDNA突变的线粒体上。PINK1使Larp磷酸化,以抑制线粒体外膜上的蛋白质合成。有缺陷的线粒体上局部翻译受损,进而限制了其mtDNA的复制,从而限制了有害突变向后代的传递。我们的工作证实了果蝇卵子发生过程中在细胞器水平上发生了选择性遗传,并提供了分子切入点,以便在其他系统中测试该模型。

相似文献

1
PINK1 Inhibits Local Protein Synthesis to Limit Transmission of Deleterious Mitochondrial DNA Mutations.
Mol Cell. 2019 Mar 21;73(6):1127-1137.e5. doi: 10.1016/j.molcel.2019.01.013. Epub 2019 Feb 13.
2
The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.
EMBO J. 2016 May 17;35(10):1045-57. doi: 10.15252/embj.201592994. Epub 2016 Apr 6.
4
Deleterious mitochondrial DNA point mutations are overrepresented in Drosophila expressing a proofreading-defective DNA polymerase γ.
PLoS Genet. 2018 Nov 19;14(11):e1007805. doi: 10.1371/journal.pgen.1007805. eCollection 2018 Nov.
6
Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline.
Nature. 2019 Jun;570(7761):380-384. doi: 10.1038/s41586-019-1213-4. Epub 2019 May 15.
9
Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster.
Cell Death Differ. 2012 Aug;19(8):1308-16. doi: 10.1038/cdd.2012.5. Epub 2012 Feb 3.
10
Translational regulation of mitochondrial biogenesis.
Biochem Soc Trans. 2016 Dec 15;44(6):1717-1724. doi: 10.1042/BST20160071C.

引用本文的文献

1
Mitochondrial curation for the next generation.
Curr Opin Genet Dev. 2025 Aug;93:102376. doi: 10.1016/j.gde.2025.102376. Epub 2025 Jul 5.
2
Programmed mitophagy at the oocyte-to-zygote transition promotes species immortality.
Res Sq. 2025 Apr 9:rs.3.rs-6330979. doi: 10.21203/rs.3.rs-6330979/v1.
3
Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes.
Biogerontology. 2024 Dec 27;26(1):33. doi: 10.1007/s10522-024-10175-x.
5
Selection promotes age-dependent degeneration of the mitochondrial genome.
bioRxiv. 2024 Sep 28:2024.09.27.615276. doi: 10.1101/2024.09.27.615276.
6
Oocyte Health and Quality: Implication of Mitochondria-related Organelle Interactions.
Results Probl Cell Differ. 2024;73:25-42. doi: 10.1007/978-3-031-62036-2_2.
7
Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA.
Nat Aging. 2024 Sep;4(9):1211-1230. doi: 10.1038/s43587-024-00672-6. Epub 2024 Jul 29.
9
Mitochondrial Differentiation during Spermatogenesis: Lessons from .
Int J Mol Sci. 2024 Apr 3;25(7):3980. doi: 10.3390/ijms25073980.
10
A transcription network underlies the dual genomic coordination of mitochondrial biogenesis.
bioRxiv. 2024 Sep 16:2024.01.25.577217. doi: 10.1101/2024.01.25.577217.

本文引用的文献

1
Live Imaging Mitochondrial Transport in Neurons.
Neuromethods. 2017;123:49-66. doi: 10.1007/978-1-4939-6890-9_3. Epub 2017 Mar 18.
2
Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity.
Autophagy. 2018;14(8):1293-1309. doi: 10.1080/15548627.2018.1474991. Epub 2018 Jul 21.
3
PINK1 Phosphorylates MIC60/Mitofilin to Control Structural Plasticity of Mitochondrial Crista Junctions.
Mol Cell. 2018 Mar 1;69(5):744-756.e6. doi: 10.1016/j.molcel.2018.01.026. Epub 2018 Feb 15.
4
Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos.
Nat Cell Biol. 2018 Feb;20(2):144-151. doi: 10.1038/s41556-017-0017-8. Epub 2018 Jan 15.
7
Parkin-independent mitophagy-FKBP8 takes the stage.
EMBO Rep. 2017 Jun;18(6):864-865. doi: 10.15252/embr.201744313. Epub 2017 May 17.
8
Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster.
Dev Cell. 2016 Dec 5;39(5):560-571. doi: 10.1016/j.devcel.2016.11.004.
9
Translational regulation of mitochondrial biogenesis.
Biochem Soc Trans. 2016 Dec 15;44(6):1717-1724. doi: 10.1042/BST20160071C.
10
PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control.
Cell Death Dis. 2016 Dec 1;7(12):e2501. doi: 10.1038/cddis.2016.396.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验