Suppr超能文献

SignalP 5.0 使用深度神经网络改进了信号肽预测。

SignalP 5.0 improves signal peptide predictions using deep neural networks.

机构信息

Department of Bio and Health Informatics, Technical University of Denmark, Kgs Lyngby, Denmark.

Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.

出版信息

Nat Biotechnol. 2019 Apr;37(4):420-423. doi: 10.1038/s41587-019-0036-z. Epub 2019 Feb 18.

Abstract

Signal peptides (SPs) are short amino acid sequences in the amino terminus of many newly synthesized proteins that target proteins into, or across, membranes. Bioinformatic tools can predict SPs from amino acid sequences, but most cannot distinguish between various types of signal peptides. We present a deep neural network-based approach that improves SP prediction across all domains of life and distinguishes between three types of prokaryotic SPs.

摘要

信号肽(SPs)是许多新合成蛋白质氨基端的短氨基酸序列,可将蛋白质靶向到膜内或穿过膜。生物信息学工具可以从氨基酸序列中预测 SPs,但大多数工具无法区分各种类型的信号肽。我们提出了一种基于深度神经网络的方法,该方法可提高所有生命领域的 SP 预测能力,并区分三种原核 SP。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验