Suppr超能文献

生物发光和化学发光报告基因和生物传感器的发展与应用。

Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors.

机构信息

Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA; email:

出版信息

Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):129-150. doi: 10.1146/annurev-anchem-061318-115027. Epub 2019 Feb 20.

Abstract

Although fluorescent reporters and biosensors have become indispensable tools in biological and biomedical fields, fluorescence measurements require external excitation light, thereby limiting their use in thick tissues and live animals. Bioluminescent reporters and biosensors may potentially overcome this hurdle because they use enzyme-catalyzed exothermic biochemical reactions to generate excited-state emitters. This review first introduces the development of bioluminescent reporters, and next, their applications in sensing biological changes in vitro and in vivo as biosensors. Lastly, we discuss chemiluminescent sensors that produce photons in the absence of luciferases. This review aims to explore fundamentals and experimental insights and to emphasize the yet-to-be-reached potential of next-generation luminescent reporters and biosensors.

摘要

尽管荧光报告基因和生物传感器已经成为生物和生物医学领域不可或缺的工具,但荧光测量需要外部激发光,从而限制了它们在厚组织和活体动物中的应用。生物发光报告基因和生物传感器可能潜在地克服这一障碍,因为它们利用酶促放热生化反应来产生激发态发射体。本综述首先介绍了生物发光报告基因的发展,然后介绍了它们作为生物传感器在体外和体内检测生物变化中的应用。最后,我们讨论了在没有荧光素酶的情况下产生光子的化学发光传感器。本综述旨在探讨基本原理和实验见解,并强调下一代发光报告基因和生物传感器尚未达到的潜力。

相似文献

1
Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors.
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):129-150. doi: 10.1146/annurev-anchem-061318-115027. Epub 2019 Feb 20.
2
[Bioluminescent reporter genes].
Postepy Biochem. 2008;54(4):350-3.
3
Advances in bioluminescence imaging: new probes from old recipes.
Curr Opin Chem Biol. 2018 Aug;45:148-156. doi: 10.1016/j.cbpa.2018.05.009. Epub 2018 Jun 5.
4
Advances in the Development of Bacterial Bioluminescence Imaging.
Annu Rev Anal Chem (Palo Alto Calif). 2024 Jul;17(1):265-288. doi: 10.1146/annurev-anchem-061622-034229. Epub 2024 Jul 2.
5
Engineering BRET-Sensor Proteins.
Methods Enzymol. 2017;589:87-114. doi: 10.1016/bs.mie.2017.01.010. Epub 2017 Feb 20.
6
Building Biological Flashlights: Orthogonal Luciferases and Luciferins for Imaging.
Acc Chem Res. 2019 Nov 19;52(11):3039-3050. doi: 10.1021/acs.accounts.9b00391. Epub 2019 Oct 8.
7
Secreted Reporters for Monitoring Multiple Promoter Function.
Methods Mol Biol. 2017;1651:33-47. doi: 10.1007/978-1-4939-7223-4_4.
8
Development of Ratiometric Bioluminescent Sensors for Detection of Bacterial Signaling.
ACS Chem Biol. 2020 Apr 17;15(4):904-914. doi: 10.1021/acschembio.9b00800. Epub 2020 Mar 25.
9
Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology.
Cell Chem Biol. 2020 Aug 20;27(8):904-920. doi: 10.1016/j.chembiol.2020.07.022. Epub 2020 Aug 13.
10
Reporter-Based BRET Sensors for Measuring Biological Functions In Vivo.
Methods Mol Biol. 2018;1790:51-74. doi: 10.1007/978-1-4939-7860-1_5.

引用本文的文献

1
A De Novo Luciferase Bioconjugate for the Cas13-Based Detection of Influenza A.
JACS Au. 2025 Jul 28;5(8):3914-3925. doi: 10.1021/jacsau.5c00576. eCollection 2025 Aug 25.
2
Continuous hypermutation and evolution of luciferase variants.
bioRxiv. 2025 Aug 12:2025.08.11.669707. doi: 10.1101/2025.08.11.669707.
3
A fully automated, ultrasensitive luminescence cascade sensor to address hepatitis C diagnostic disparity.
Innovation (Camb). 2025 May 15;6(8):100952. doi: 10.1016/j.xinn.2025.100952. eCollection 2025 Aug 4.
4
An Enhanced Red Bioluminescent Indicator for Responsive Detection of Physiological Calcium Dynamics in Cells and Mice.
ACS Sens. 2025 Aug 22;10(8):5826-5833. doi: 10.1021/acssensors.5c01093. Epub 2025 Jul 29.
5
De novo luciferases enable multiplexed bioluminescence imaging.
Chem. 2025 Mar 13;11(3). doi: 10.1016/j.chempr.2024.10.013. Epub 2024 Nov 12.
6
An optimized luciferin formulation for NanoLuc-based in vivo bioluminescence imaging.
Sci Rep. 2025 Apr 15;15(1):12884. doi: 10.1038/s41598-025-97366-9.
7
Electrically Driven, Bioluminescent Compliant Devices for Soft Robotics.
ACS Appl Mater Interfaces. 2025 Feb 19;17(7):11248-11258. doi: 10.1021/acsami.4c18209. Epub 2025 Feb 10.
8
A Novel Approach Using LuxSit-i Enhanced Toehold Switches for the Rapid Detection of .
Biosensors (Basel). 2024 Dec 21;14(12):637. doi: 10.3390/bios14120637.
9
PEGylated ATP-Independent Luciferins for Noninvasive High-Sensitivity High-Speed Bioluminescence Imaging.
ACS Chem Biol. 2025 Jan 17;20(1):128-136. doi: 10.1021/acschembio.4c00601. Epub 2024 Dec 23.
10
A modular platform for bioluminescent RNA tracking.
Nat Commun. 2024 Nov 18;15(1):9992. doi: 10.1038/s41467-024-54263-5.

本文引用的文献

1
Luciferase-induced photoreductive uncaging of small-molecule effectors.
Nat Commun. 2018 Aug 30;9(1):3539. doi: 10.1038/s41467-018-05916-9.
2
Luciferase complementation based-detection of G-protein-coupled receptor activity.
Biotechniques. 2018 Jul;65(1):9-14. doi: 10.2144/btn-2018-0039.
3
A Bioluminescent Ca Indicator Based on a Topological Variant of GCaMP6s.
Chembiochem. 2019 Feb 15;20(4):516-520. doi: 10.1002/cbic.201800255. Epub 2018 Jul 31.
5
Advances in bioluminescence imaging: new probes from old recipes.
Curr Opin Chem Biol. 2018 Aug;45:148-156. doi: 10.1016/j.cbpa.2018.05.009. Epub 2018 Jun 5.
6
Azide- and Dye-Conjugated Coelenterazine Analogues for a Multiplex Molecular Imaging Platform.
Bioconjug Chem. 2018 Jun 20;29(6):1922-1931. doi: 10.1021/acs.bioconjchem.8b00188. Epub 2018 May 16.
7
A chemiluminescent probe for cellular peroxynitrite using a self-immolative oxidative decarbonylation reaction.
Chem Sci. 2018 Jan 31;9(9):2552-2558. doi: 10.1039/c7sc05087a. eCollection 2018 Mar 7.
8
Bioluminescent Low-Affinity Ca Indicator for ER with Multicolor Calcium Imaging in Single Living Cells.
ACS Chem Biol. 2018 Jul 20;13(7):1862-1871. doi: 10.1021/acschembio.7b01014. Epub 2018 Mar 9.
9
Single-cell bioluminescence imaging of deep tissue in freely moving animals.
Science. 2018 Feb 23;359(6378):935-939. doi: 10.1126/science.aaq1067.
10
Homogeneous Noncompetitive Luminescent Immunodetection of Small Molecules by Ternary Protein Fragment Complementation.
Anal Chem. 2018 Mar 6;90(5):3001-3004. doi: 10.1021/acs.analchem.7b05140. Epub 2018 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验