Suppr超能文献

利用类器官构建工程材料以模拟人类肠道发育和癌症。

Engineered materials to model human intestinal development and cancer using organoids.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.

Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.

出版信息

Exp Cell Res. 2019 Apr 15;377(1-2):109-114. doi: 10.1016/j.yexcr.2019.02.017. Epub 2019 Feb 19.

Abstract

Human organoids provide constructive in vitro models of human development and disease, as these recapitulate important morphogenetic and functional features of the tissue and species of origin. However, organoid culture technologies often involve the use of biologically-derived materials (e.g. Matrigel™) that do not allow dissection of the independent contributions of the biochemical and biophysical matrix properties to organoid development. Additionally, their inherent lot-to-lot variability and, in the case of Matrigel™, tumor-derived nature limits their applicability as platforms for drug and tissue transplantation therapies. Here, we highlight recent studies that overcome these limitations through engineering of novel biomaterial platforms that (1) allow to study the independent contributions of physicochemical matrix properties to organoid development and their potential for translational therapies, and (2) better recreate the tumor microenvironment for high-throughput, pre-clinical drug development. These studies illustrate how innovative biomaterial constructs can contribute to the modeling of human development and disease using organoids, and as platforms for development of organoid-based therapies. Finally, we discuss the current limitations of the organoid field and how they can potentially be addressed using engineered biomaterials.

摘要

人类类器官为人类发育和疾病提供了具有建设性的体外模型,因为它们再现了组织和起源物种的重要形态发生和功能特征。然而,类器官培养技术通常涉及使用生物衍生材料(例如 Matrigel ™),这些材料无法将生化和生物物理基质特性对类器官发育的独立贡献进行剖析。此外,它们固有的批次间变异性,以及在 Matrigel ™的情况下,肿瘤衍生的性质限制了它们作为药物和组织移植治疗平台的适用性。在这里,我们强调了最近的研究,这些研究通过工程新型生物材料平台克服了这些限制,这些平台(1)允许研究物理化学基质特性对类器官发育的独立贡献及其在转化治疗中的潜力,以及(2)更好地再现肿瘤微环境,以实现高通量、临床前药物开发。这些研究说明了创新的生物材料构建如何有助于使用类器官对人类发育和疾病进行建模,以及作为基于类器官的治疗方法的平台。最后,我们讨论了类器官领域的当前限制,以及如何使用工程生物材料来解决这些限制。

相似文献

1
Engineered materials to model human intestinal development and cancer using organoids.
Exp Cell Res. 2019 Apr 15;377(1-2):109-114. doi: 10.1016/j.yexcr.2019.02.017. Epub 2019 Feb 19.
2
Cellular self-assembly and biomaterials-based organoid models of development and diseases.
Acta Biomater. 2017 Apr 15;53:29-45. doi: 10.1016/j.actbio.2017.01.075. Epub 2017 Jan 31.
3
Biomaterials and biosensors in intestinal organoid culture, a progress review.
J Biomed Mater Res A. 2020 May;108(7):1501-1508. doi: 10.1002/jbm.a.36921. Epub 2020 Mar 20.
4
Biomaterial-guided stem cell organoid engineering for modeling development and diseases.
Acta Biomater. 2021 Sep 15;132:23-36. doi: 10.1016/j.actbio.2021.01.026. Epub 2021 Jan 22.
5
Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro.
Biomaterials. 2019 Feb;194:195-214. doi: 10.1016/j.biomaterials.2018.12.006. Epub 2018 Dec 10.
6
The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.
Acta Biomater. 2017 May;54:35-44. doi: 10.1016/j.actbio.2017.03.023. Epub 2017 Mar 16.
7
Bioengineering Approaches for the Advanced Organoid Research.
Adv Mater. 2021 Nov;33(45):e2007949. doi: 10.1002/adma.202007949. Epub 2021 Sep 24.
8
Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids.
Biomater Sci. 2015 Oct 15;3(10):1376-85. doi: 10.1039/c5bm00108k. Epub 2015 Jul 16.
9
Intestinal organoids in infants and children.
Pediatr Surg Int. 2020 Jan;36(1):1-10. doi: 10.1007/s00383-019-04581-3. Epub 2019 Sep 25.
10
Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.
Int J Mol Sci. 2018 Mar 21;19(4):936. doi: 10.3390/ijms19040936.

引用本文的文献

1
Organoids in Haematologic Research: Advances and Future Directions.
Cell Prolif. 2025 Jun;58(6):e13806. doi: 10.1111/cpr.13806. Epub 2025 Jan 26.
2
Bridging systems biology and tissue engineering: Unleashing the full potential of complex 3D tissue models of disease.
Biophys Rev (Melville). 2024 Apr 10;5(2):021301. doi: 10.1063/5.0179125. eCollection 2024 Jun.
3
Advances and Applications of Cancer Organoids in Drug Screening and Personalized Medicine.
Stem Cell Rev Rep. 2024 Jul;20(5):1213-1226. doi: 10.1007/s12015-024-10714-6. Epub 2024 Mar 27.
4
Biomaterial-based 3D modeling of glioblastoma multiforme.
Cancer Pathog Ther. 2023 Jan 9;1(3):177-194. doi: 10.1016/j.cpt.2023.01.002. eCollection 2023 Jul.
5
Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery.
Adv Mater. 2024 Mar;36(9):e2307678. doi: 10.1002/adma.202307678. Epub 2023 Dec 6.
7
Organoid Technology: A Reliable Developmental Biology Tool for Organ-Specific Nanotoxicity Evaluation.
Front Cell Dev Biol. 2021 Sep 23;9:696668. doi: 10.3389/fcell.2021.696668. eCollection 2021.
8
Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions.
Acta Biomater. 2021 Aug;130:161-171. doi: 10.1016/j.actbio.2021.05.054. Epub 2021 Jun 1.
9
Emerging technologies provide insights on cancer extracellular matrix biology and therapeutics.
iScience. 2021 Apr 26;24(5):102475. doi: 10.1016/j.isci.2021.102475. eCollection 2021 May 21.
10
Understanding the cellular origin and progression of esophageal cancer using esophageal organoids.
Cancer Lett. 2021 Jul 1;509:39-52. doi: 10.1016/j.canlet.2021.03.031. Epub 2021 Apr 7.

本文引用的文献

1
Human blood vessel organoids as a model of diabetic vasculopathy.
Nature. 2019 Jan;565(7740):505-510. doi: 10.1038/s41586-018-0858-8. Epub 2019 Jan 16.
2
PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery.
Nat Protoc. 2018 Sep;13(9):2102-2119. doi: 10.1038/s41596-018-0036-3.
3
Mechanically induced development and maturation of human intestinal organoids in vivo.
Nat Biomed Eng. 2018 Jun;2(6):429-442. doi: 10.1038/s41551-018-0243-9. Epub 2018 Jun 4.
5
Folding artificial mucosa with cell-laden hydrogels guided by mechanics models.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7503-7508. doi: 10.1073/pnas.1802361115. Epub 2018 Jul 2.
6
Bioengineering strategies to accelerate stem cell therapeutics.
Nature. 2018 May;557(7705):335-342. doi: 10.1038/s41586-018-0089-z. Epub 2018 May 16.
7
Patient-derived organoids model treatment response of metastatic gastrointestinal cancers.
Science. 2018 Feb 23;359(6378):920-926. doi: 10.1126/science.aao2774.
8
Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine.
Biochim Biophys Acta Rev Cancer. 2018 Apr;1869(2):117-127. doi: 10.1016/j.bbcan.2017.12.005. Epub 2018 Jan 31.
9
Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer.
Biomaterials. 2018 Mar;159:229-240. doi: 10.1016/j.biomaterials.2017.12.026. Epub 2018 Jan 4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验