Suppr超能文献

针对脊髓损伤后的皮质脊髓束的综合治疗方法。

Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury.

机构信息

Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.

Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China.

出版信息

J Zhejiang Univ Sci B. 2019;20(3):205-218. doi: 10.1631/jzus.B1800280.

Abstract

Spinal cord injury (SCI), which is much in the public eye, is still a refractory disease compromising the well-being of both patients and society. In spite of there being many methods dealing with the lesion, there is still a deficiency in comprehensive strategies covering all facets of this damage. Further, we should also mention the structure called the corticospinal tract (CST) which plays a crucial role in the motor responses of organisms, and it will be the focal point of our attention. In this review, we discuss a variety of strategies targeting different dimensions following SCI and some treatments that are especially efficacious to the CST are emphasized. Over recent decades, researchers have developed many effective tactics involving five approaches: (1) tackle more extensive regions; (2) provide a regenerative microenvironment; (3) provide a glial microenvironment; (4) transplantation; and (5) other auxiliary methods, for instance, rehabilitation training and electrical stimulation. We review the basic knowledge on this disease and correlative treatments. In addition, some well-formulated perspectives and hypotheses have been delineated. We emphasize that such a multifaceted problem needs combinatorial approaches, and we analyze some discrepancies in past studies. Finally, for the future, we present numerous brand-new latent tactics which have great promise for curbing SCI.

摘要

脊髓损伤(SCI)是公众关注的焦点,但仍是一种影响患者和社会福祉的难治性疾病。尽管有许多方法可以处理损伤,但仍缺乏涵盖这一损伤所有方面的综合策略。此外,我们还应该提到被称为皮质脊髓束(CST)的结构,它在生物体的运动反应中起着至关重要的作用,这将是我们关注的焦点。在这篇综述中,我们讨论了针对 SCI 后不同方面的各种策略,强调了一些对 CST 特别有效的治疗方法。近几十年来,研究人员已经开发了许多有效的策略,涉及五种方法:(1)解决更广泛的区域;(2)提供再生微环境;(3)提供神经胶质微环境;(4)移植;和(5)其他辅助方法,例如康复训练和电刺激。我们回顾了这种疾病的基本知识和相关的治疗方法。此外,还提出了一些经过精心制定的观点和假设。我们强调,这种多方面的问题需要综合方法,并分析了过去研究中的一些差异。最后,我们提出了许多新的潜在策略,这些策略有望抑制 SCI。

相似文献

1
Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury.
J Zhejiang Univ Sci B. 2019;20(3):205-218. doi: 10.1631/jzus.B1800280.
2
Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
Exp Neurol. 2013 Sep;247:241-9. doi: 10.1016/j.expneurol.2013.05.003. Epub 2013 May 17.
3
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes.
Mol Neurobiol. 2021 Nov;58(11):5494-5516. doi: 10.1007/s12035-021-02484-w. Epub 2021 Aug 3.
7
Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
Exp Neurol. 2013 Sep;247:605-14. doi: 10.1016/j.expneurol.2013.02.013. Epub 2013 Mar 5.
8
Effects of glial transplantation on functional recovery following acute spinal cord injury.
J Neurotrauma. 2005 May;22(5):575-89. doi: 10.1089/neu.2005.22.575.
9
Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
Neuroscience. 2014 Jul 11;272:65-75. doi: 10.1016/j.neuroscience.2014.04.041. Epub 2014 May 6.

引用本文的文献

1
Research hotspots and trends in the application of diffusion tensor imaging in ischemic stroke: a bibliometric analysis (2003-2024).
Front Neurol. 2025 Jun 30;16:1579598. doi: 10.3389/fneur.2025.1579598. eCollection 2025.
2
Therapeutic Potential of Astrocyte Transplantation.
Cell Transplant. 2022 Jan-Dec;31:9636897221105499. doi: 10.1177/09636897221105499.
3
miR-7b-3p Exerts a Dual Role After Spinal Cord Injury, by Supporting Plasticity and Neuroprotection at Cortical Level.
Front Mol Biosci. 2021 Mar 31;8:618869. doi: 10.3389/fmolb.2021.618869. eCollection 2021.
4
CX3CR1 contributes to streptozotocin-induced mechanical allodynia in the mouse spinal cord.
J Zhejiang Univ Sci B. 2020;21(2):166-171. doi: 10.1631/jzus.B1900439. Epub 2020 Feb 14.

本文引用的文献

1
Melatonin improves quality and longevity of chronic neural recording.
Biomaterials. 2018 Oct;180:225-239. doi: 10.1016/j.biomaterials.2018.07.026. Epub 2018 Jul 17.
2
Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses.
Neurotherapeutics. 2018 Jul;15(3):541-553. doi: 10.1007/s13311-018-0631-6.
3
GnRH-(1-5) Inhibits TGF-β Signaling to Regulate the Migration of Immortalized Gonadotropin-Releasing Hormone Neurons.
Front Endocrinol (Lausanne). 2018 Feb 20;9:45. doi: 10.3389/fendo.2018.00045. eCollection 2018.
5
Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review.
Iran J Basic Med Sci. 2017 Dec;20(12):1287-1296. doi: 10.22038/IJBMS.2017.9620.
6
In Vitro Effects of Serotonin, Melatonin, and Other Related Indole Compounds on Amyloid-β Kinetics and Neuroprotection.
Mol Nutr Food Res. 2018 Feb;62(3). doi: 10.1002/mnfr.201700383. Epub 2018 Jan 4.
7
Apolipoprotein E as a novel therapeutic neuroprotection target after traumatic spinal cord injury.
Exp Neurol. 2018 Jan;299(Pt A):97-108. doi: 10.1016/j.expneurol.2017.10.014. Epub 2017 Oct 19.
8
The Beneficial Effects of Melatonin Administration Following Hypoxia-Ischemia in Preterm Fetal Sheep.
Front Cell Neurosci. 2017 Sep 22;11:296. doi: 10.3389/fncel.2017.00296. eCollection 2017.
9
Neural stem/progenitor cells are activated during tail regeneration in the leopard gecko (Eublepharis macularius).
J Comp Neurol. 2018 Feb 1;526(2):285-309. doi: 10.1002/cne.24335. Epub 2017 Oct 20.
10
Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.
J Pharmacol Exp Ther. 2017 Dec;363(3):303-313. doi: 10.1124/jpet.117.244806. Epub 2017 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验