Suppr超能文献

蛋白酶体及其网络:适应性工程。

The Proteasome and Its Network: Engineering for Adaptability.

机构信息

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.

出版信息

Cold Spring Harb Perspect Biol. 2020 Jan 2;12(1):a033985. doi: 10.1101/cshperspect.a033985.

Abstract

The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.

摘要

蛋白酶体是已知的最复杂的蛋白酶,可降解与泛素缀合的蛋白质。它面临着一个独特的挑战,即要在数百种甚至数千种结构不同的底物上进行酶促反应,将它们从天然状态机械展开,并将它们从酶的一个特殊隔室向量转移到另一个隔室。此外,底物还可以通过泛素的多种链构型进行修饰。蛋白酶体的许多不寻常的设计特征可能是为了赋予该酶强大的处理底物的能力,而不论其身份如何。蛋白酶体在细胞中维持蛋白质内稳态方面发挥着重要作用,这需要适应各种应激条件。蛋白酶体功能的调节是通过与它动态相互作用、酶促修饰或精细调节其水平的大量蛋白质网络来实现的。蛋白酶体的这种适应性是其在蛋白酶中独一无二的,使细胞能够在全局范围内控制泛素-蛋白酶体途径的输出。

相似文献

1
The Proteasome and Its Network: Engineering for Adaptability.
Cold Spring Harb Perspect Biol. 2020 Jan 2;12(1):a033985. doi: 10.1101/cshperspect.a033985.
2
It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease.
Oxid Med Cell Longev. 2016;2016:2756068. doi: 10.1155/2016/2756068. Epub 2016 Jan 5.
3
The 26 S proteasome: from basic mechanisms to drug targeting.
J Biol Chem. 2009 Dec 4;284(49):33713-8. doi: 10.1074/jbc.R109.018481. Epub 2009 Oct 7.
5
Structure, Dynamics and Function of the 26S Proteasome.
Subcell Biochem. 2021;96:1-151. doi: 10.1007/978-3-030-58971-4_1.
6
Conformational switching of the 26S proteasome enables substrate degradation.
Nat Struct Mol Biol. 2013 Jul;20(7):781-8. doi: 10.1038/nsmb.2616. Epub 2013 Jun 16.
8
Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs.
J Biol Chem. 2013 Mar 15;288(11):7781-7790. doi: 10.1074/jbc.M112.441907. Epub 2013 Jan 22.
9
Regulation of the cytoplasmic quality control protein degradation pathway by BAG2.
J Biol Chem. 2005 Nov 18;280(46):38673-81. doi: 10.1074/jbc.M507986200. Epub 2005 Sep 16.

引用本文的文献

1
Revolutions at the frontline of multiple myeloma treatment: lessons and challenges to finding a cure.
Front Oncol. 2025 Jun 20;15:1578529. doi: 10.3389/fonc.2025.1578529. eCollection 2025.
2
Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens.
Antioxidants (Basel). 2025 Apr 15;14(4):471. doi: 10.3390/antiox14040471.
3
Activators of the 26S proteasome when protein degradation increases.
Exp Mol Med. 2025 Feb;57(1):41-49. doi: 10.1038/s12276-024-01385-x. Epub 2025 Jan 8.
4
Temporal control of acute protein aggregate turnover by UBE3C and NRF1-dependent proteasomal pathways.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2417390121. doi: 10.1073/pnas.2417390121. Epub 2024 Dec 5.
6
Genotype-by-environment interactions shape ubiquitin-proteasome system activity.
bioRxiv. 2024 Nov 21:2024.11.21.624644. doi: 10.1101/2024.11.21.624644.
8
Mechanisms and regulation of substrate degradation by the 26S proteasome.
Nat Rev Mol Cell Biol. 2025 Feb;26(2):104-122. doi: 10.1038/s41580-024-00778-0. Epub 2024 Oct 3.
9
N-degron pathways.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2408697121. doi: 10.1073/pnas.2408697121. Epub 2024 Sep 12.
10
Structural Dynamics Analysis of USP14 Activation by AKT-Mediated Phosphorylation.
Cells. 2024 May 31;13(11):955. doi: 10.3390/cells13110955.

本文引用的文献

1
Recognition and Degradation of Mislocalized Proteins in Health and Disease.
Cold Spring Harb Perspect Biol. 2019 Nov 1;11(11):a033902. doi: 10.1101/cshperspect.a033902.
2
Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases.
Cold Spring Harb Perspect Biol. 2019 Aug 1;11(8):a033928. doi: 10.1101/cshperspect.a033928.
3
The Unfolded Protein Response: Detecting and Responding to Fluctuations in the Protein-Folding Capacity of the Endoplasmic Reticulum.
Cold Spring Harb Perspect Biol. 2019 Sep 3;11(9):a033886. doi: 10.1101/cshperspect.a033886.
4
Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle.
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):534-539. doi: 10.1073/pnas.1817752116. Epub 2018 Dec 17.
5
UBL domain of Usp14 and other proteins stimulates proteasome activities and protein degradation in cells.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11642-E11650. doi: 10.1073/pnas.1808731115. Epub 2018 Nov 28.
6
Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome.
Nature. 2019 Jan;565(7737):49-55. doi: 10.1038/s41586-018-0736-4. Epub 2018 Nov 12.
7
USP14 promotes K63-linked RIG-I deubiquitination and suppresses antiviral immune responses.
Eur J Immunol. 2019 Jan;49(1):42-53. doi: 10.1002/eji.201847603. Epub 2018 Nov 28.
8
Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control.
Nature. 2018 Nov;563(7731):407-411. doi: 10.1038/s41586-018-0678-x. Epub 2018 Oct 31.
10
The deubiquitinating enzyme Usp14 controls ciliogenesis and Hedgehog signaling.
Hum Mol Genet. 2019 Mar 1;28(5):764-777. doi: 10.1093/hmg/ddy380.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验