1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York.
2Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York.
Antioxid Redox Signal. 2019 Sep 20;31(9):594-607. doi: 10.1089/ars.2018.7681. Epub 2019 Apr 22.
How mitochondrial reactive oxygen species (ROS) impact physiological function may depend on the quantity of ROS generated or removed, and the subcellular microdomain in which this occurs. However, pharmacological tools currently available to alter ROS production lack precise spatial and temporal control. We used CRISPR/Cas9 to fuse the light-sensitive ROS-generating protein, SuperNova to the C-terminus of mitochondrial complex II succinate dehydrogenase subunits B (SDHB-1::SuperNova) and C (SDHC-1::SuperNova) in to localize SuperNova to the matrix-side of the inner mitochondrial membrane, and to the intermembrane space (IMS), respectively. The presence of the SuperNova protein did not impact complex II activity, mitochondrial respiration, or development rate under dark conditions. ROS production by SuperNova protein in the form of superoxide (O˙) was both specific and proportional to total light irradiance in the 540-590 nm spectra, and was unaffected by varying the buffer pH to resemble the mitochondrial matrix or IMS environments. We then determined using SuperNova whether stoichiometric ROS generation in the mitochondrial matrix or IMS had distinct effects on redox signaling . Phosphorylation of PMK-1 (a p38 MAPK homolog) and transcriptional activity of SKN-1 (an Nrf2 homolog) were each dependent on both the site and duration of ROS production, with matrix-generated ROS having more prominent effects. Furthermore, matrix- but not IMS-generated ROS attenuated susceptibility to simulated ischemia reperfusion injury in . Overall, these data demonstrate that the physiological output of ROS depends on the microdomain in which it is produced. 31, 594-607.
线粒体活性氧(ROS)如何影响生理功能可能取决于产生或去除的 ROS 数量,以及发生这种情况的亚细胞微区。然而,目前用于改变 ROS 产生的药理学工具缺乏精确的时空控制。我们使用 CRISPR/Cas9 将光敏 ROS 产生蛋白 SuperNova 融合到线粒体复合物 II 琥珀酸脱氢酶亚基 B(SDHB-1::SuperNova)和 C(SDHC-1::SuperNova)的 C 末端,将 SuperNova 分别定位于线粒体内膜的基质侧和膜间隙。SuperNova 蛋白的存在不影响复合物 II 活性、线粒体呼吸或黑暗条件下的发育速度。SuperNova 蛋白以超氧阴离子(O˙)的形式产生的 ROS 产生既特异又与 540-590nm 光谱中的总光辐照度成正比,并且不受缓冲液 pH 值变化的影响,以模拟线粒体基质或 IMS 环境。然后,我们使用 SuperNova 确定线粒体基质或 IMS 中ROS 的产生是否对氧化还原信号有不同的影响。PMK-1(p38 MAPK 同源物)的磷酸化和 SKN-1(Nrf2 同源物)的转录活性都依赖于 ROS 产生的部位和持续时间,其中基质产生的 ROS 具有更显著的影响。此外,基质而不是 IMS 产生的 ROS 减弱了 对模拟缺血再灌注损伤的易感性。总体而言,这些数据表明 ROS 的生理输出取决于其产生的微区。 31, 594-607.