Suppr超能文献

线粒体活性氧在复合物 II 基质或膜间空间微区生成,对. 的氧化还原信号和应激敏感性有不同的影响。

Mitochondrial Reactive Oxygen Species Generated at the Complex-II Matrix or Intermembrane Space Microdomain Have Distinct Effects on Redox Signaling and Stress Sensitivity in .

机构信息

1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York.

2Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York.

出版信息

Antioxid Redox Signal. 2019 Sep 20;31(9):594-607. doi: 10.1089/ars.2018.7681. Epub 2019 Apr 22.

Abstract

How mitochondrial reactive oxygen species (ROS) impact physiological function may depend on the quantity of ROS generated or removed, and the subcellular microdomain in which this occurs. However, pharmacological tools currently available to alter ROS production lack precise spatial and temporal control. We used CRISPR/Cas9 to fuse the light-sensitive ROS-generating protein, SuperNova to the C-terminus of mitochondrial complex II succinate dehydrogenase subunits B (SDHB-1::SuperNova) and C (SDHC-1::SuperNova) in to localize SuperNova to the matrix-side of the inner mitochondrial membrane, and to the intermembrane space (IMS), respectively. The presence of the SuperNova protein did not impact complex II activity, mitochondrial respiration, or development rate under dark conditions. ROS production by SuperNova protein in the form of superoxide (O˙) was both specific and proportional to total light irradiance in the 540-590 nm spectra, and was unaffected by varying the buffer pH to resemble the mitochondrial matrix or IMS environments. We then determined using SuperNova whether stoichiometric ROS generation in the mitochondrial matrix or IMS had distinct effects on redox signaling . Phosphorylation of PMK-1 (a p38 MAPK homolog) and transcriptional activity of SKN-1 (an Nrf2 homolog) were each dependent on both the site and duration of ROS production, with matrix-generated ROS having more prominent effects. Furthermore, matrix- but not IMS-generated ROS attenuated susceptibility to simulated ischemia reperfusion injury in . Overall, these data demonstrate that the physiological output of ROS depends on the microdomain in which it is produced. 31, 594-607.

摘要

线粒体活性氧(ROS)如何影响生理功能可能取决于产生或去除的 ROS 数量,以及发生这种情况的亚细胞微区。然而,目前用于改变 ROS 产生的药理学工具缺乏精确的时空控制。我们使用 CRISPR/Cas9 将光敏 ROS 产生蛋白 SuperNova 融合到线粒体复合物 II 琥珀酸脱氢酶亚基 B(SDHB-1::SuperNova)和 C(SDHC-1::SuperNova)的 C 末端,将 SuperNova 分别定位于线粒体内膜的基质侧和膜间隙。SuperNova 蛋白的存在不影响复合物 II 活性、线粒体呼吸或黑暗条件下的发育速度。SuperNova 蛋白以超氧阴离子(O˙)的形式产生的 ROS 产生既特异又与 540-590nm 光谱中的总光辐照度成正比,并且不受缓冲液 pH 值变化的影响,以模拟线粒体基质或 IMS 环境。然后,我们使用 SuperNova 确定线粒体基质或 IMS 中ROS 的产生是否对氧化还原信号有不同的影响。PMK-1(p38 MAPK 同源物)的磷酸化和 SKN-1(Nrf2 同源物)的转录活性都依赖于 ROS 产生的部位和持续时间,其中基质产生的 ROS 具有更显著的影响。此外,基质而不是 IMS 产生的 ROS 减弱了 对模拟缺血再灌注损伤的易感性。总体而言,这些数据表明 ROS 的生理输出取决于其产生的微区。 31, 594-607.

相似文献

2
A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans.
PLoS Biol. 2010 Dec 7;8(12):e1000556. doi: 10.1371/journal.pbio.1000556.
3
Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
J Biol Chem. 2017 Jun 16;292(24):9896-9905. doi: 10.1074/jbc.M116.768325. Epub 2017 Apr 27.
4
Generator-specific targets of mitochondrial reactive oxygen species.
Free Radic Biol Med. 2015 Jan;78:1-10. doi: 10.1016/j.freeradbiomed.2014.10.511. Epub 2014 Oct 29.
5
Redox Signaling Through Compartmentalization of Reactive Oxygen Species: Implications for Health and Disease.
Antioxid Redox Signal. 2019 Sep 20;31(9):591-593. doi: 10.1089/ars.2019.7804. Epub 2019 Jun 19.
6
Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
Biochim Biophys Acta. 2013 Oct;1827(10):1156-64. doi: 10.1016/j.bbabio.2013.06.005. Epub 2013 Jun 22.
7
Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
Physiol Plant. 2010 Apr;138(4):447-62. doi: 10.1111/j.1399-3054.2009.01340.x. Epub 2009 Dec 9.
8
Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury.
Antioxid Redox Signal. 2019 Sep 20;31(9):608-622. doi: 10.1089/ars.2018.7693. Epub 2019 Jul 1.
9
Increased Succinate Accumulation Induces ROS Generation in Ischemia/Reperfusion-Affected Rat Kidney Mitochondria.
Biomed Res Int. 2020 Oct 13;2020:8855585. doi: 10.1155/2020/8855585. eCollection 2020.

引用本文的文献

2
Chromophore-Assisted Light Inactivation for Protein Degradation and Its Application in Biomedicine.
Bioengineering (Basel). 2024 Jun 26;11(7):651. doi: 10.3390/bioengineering11070651.
3
Mitochondrial Physiology of Cellular Redox Regulations.
Physiol Res. 2024 Aug 30;73(S1):S217-S242. doi: 10.33549/physiolres.935269. Epub 2024 Apr 22.
4
The use of NADH anisotropy to investigate mitochondrial cristae alignment.
Sci Rep. 2024 Mar 12;14(1):5980. doi: 10.1038/s41598-024-55780-5.
5
Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation.
Int J Mol Sci. 2024 Jan 21;25(2):1314. doi: 10.3390/ijms25021314.
6
7
Reactive oxygen species drive foraging decisions in Caenorhabditis elegans.
Redox Biol. 2023 Nov;67:102934. doi: 10.1016/j.redox.2023.102934. Epub 2023 Oct 13.
8
All-optical spatiotemporal mapping of ROS dynamics across mitochondrial microdomains in situ.
Nat Commun. 2023 Sep 27;14(1):6036. doi: 10.1038/s41467-023-41682-z.
9
Acute exercise and high-glucose ingestion elicit dynamic and individualized responses in systemic markers of redox homeostasis.
Front Immunol. 2023 Mar 30;14:1127088. doi: 10.3389/fimmu.2023.1127088. eCollection 2023.
10
Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology.
Antioxid Redox Signal. 2023 Oct;39(10-12):635-683. doi: 10.1089/ars.2022.0173. Epub 2023 Apr 11.

本文引用的文献

1
Insight into GFPmut2 pH Dependence by Single Crystal Microspectrophotometry and X-ray Crystallography.
J Phys Chem B. 2018 Dec 13;122(49):11326-11337. doi: 10.1021/acs.jpcb.8b07260. Epub 2018 Sep 17.
2
Light-induced oxidant production by fluorescent proteins.
Free Radic Biol Med. 2018 Nov 20;128:157-164. doi: 10.1016/j.freeradbiomed.2018.02.002. Epub 2018 Feb 6.
3
A CRISPR screen identifies a pathway required for paraquat-induced cell death.
Nat Chem Biol. 2017 Dec;13(12):1274-1279. doi: 10.1038/nchembio.2499. Epub 2017 Oct 23.
4
Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions.
J Biol Chem. 2017 Oct 13;292(41):16804-16809. doi: 10.1074/jbc.R117.789271. Epub 2017 Aug 24.
5
A reciprocal relationship between reactive oxygen species and mitochondrial dynamics in neurodegeneration.
Redox Biol. 2018 Apr;14:7-19. doi: 10.1016/j.redox.2017.08.010. Epub 2017 Aug 12.
6
Optogenetic control of mitochondrial metabolism and Ca signaling by mitochondria-targeted opsins.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5167-E5176. doi: 10.1073/pnas.1703623114. Epub 2017 Jun 13.
8
Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress.
Redox Biol. 2017 Apr;11:613-619. doi: 10.1016/j.redox.2016.12.035. Epub 2017 Jan 5.
9
The Skp1 Homologs SKR-1/2 Are Required for the Caenorhabditis elegans SKN-1 Antioxidant/Detoxification Response Independently of p38 MAPK.
PLoS Genet. 2016 Oct 24;12(10):e1006361. doi: 10.1371/journal.pgen.1006361. eCollection 2016 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验