Suppr超能文献

淀粉样变形成途径的复杂恼人之处。

The vexing complexity of the amyloidogenic pathway.

机构信息

Departments of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37240.

出版信息

Protein Sci. 2019 Jul;28(7):1177-1193. doi: 10.1002/pro.3606. Epub 2019 Apr 11.

Abstract

The role of the amyloidogenic pathway in the etiology of Alzheimer's disease (AD), particularly the common sporadic late onset forms of the disease, is controversial. To some degree, this is a consequence of the failure of drug and therapeutic antibody trials based either on targeting the proteases in this pathway or its amyloid end products. Here, we explore the formidable complexity of the biochemistry and cell biology associated with this pathway. For example, we review evidence that the immediate precursor of amyloid-β, the C99 domain of the amyloid precursor protein (APP), may itself be toxic. We also review important new results that appear to finally establish a direct genetic link between mutations in APP and the sporadic forms of AD. Based on the complexity of amyloidogenesis, it seems possible that a major contributor to the failure of related drug trials is that we have an incomplete understanding of this pathway and how it is linked to Alzheimer's pathogenesis. If so, this highlights a need for further characterization of this pathway, not its abandonment.

摘要

淀粉样蛋白生成途径在阿尔茨海默病(AD)病因学中的作用,特别是常见的散发晚发性疾病形式,存在争议。在某种程度上,这是基于针对该途径中的蛋白酶或其淀粉样终产物的药物和治疗性抗体试验失败的结果。在这里,我们探讨了与该途径相关的生物化学和细胞生物学的艰巨复杂性。例如,我们回顾了证据表明淀粉样蛋白-β的直接前体,即淀粉样前体蛋白(APP)的 C99 结构域,本身可能具有毒性。我们还回顾了一些重要的新结果,这些结果似乎最终确立了 APP 突变与散发型 AD 之间的直接遗传联系。基于淀粉样蛋白生成的复杂性,与相关药物试验失败相关的一个主要因素可能是我们对该途径及其与阿尔茨海默病发病机制的联系了解不完整。如果是这样,这就强调了需要进一步对该途径进行特征描述,而不是放弃该途径。

相似文献

1
The vexing complexity of the amyloidogenic pathway.
Protein Sci. 2019 Jul;28(7):1177-1193. doi: 10.1002/pro.3606. Epub 2019 Apr 11.
3
BACE1 Cleavage Site Selection Critical for Amyloidogenesis and Alzheimer's Pathogenesis.
J Neurosci. 2017 Jul 19;37(29):6915-6925. doi: 10.1523/JNEUROSCI.0340-17.2017. Epub 2017 Jun 16.
4
Presenilin Is Essential for ApoE Secretion, a Novel Role of Presenilin Involved in Alzheimer's Disease Pathogenesis.
J Neurosci. 2022 Feb 23;42(8):1574-1586. doi: 10.1523/JNEUROSCI.2039-21.2021. Epub 2022 Jan 5.
5
Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer's disease.
Aging Cell. 2012 Aug;11(4):559-68. doi: 10.1111/j.1474-9726.2012.00817.x. Epub 2012 Apr 9.
7
Zinc and Copper Differentially Modulate Amyloid Precursor Protein Processing by γ-Secretase and Amyloid-β Peptide Production.
J Biol Chem. 2017 Mar 3;292(9):3751-3767. doi: 10.1074/jbc.M116.754101. Epub 2017 Jan 17.
9
Conformational Models of APP Processing by Gamma Secretase Based on Analysis of Pathogenic Mutations.
Int J Mol Sci. 2021 Dec 18;22(24):13600. doi: 10.3390/ijms222413600.

引用本文的文献

1
Navigating the treatment landscape of Alzheimer's disease: Current strategies and future directions.
Ibrain. 2025 May 10;11(2):162-184. doi: 10.1002/ibra.12197. eCollection 2025 Summer.
2
Optimizing NMR fragment-based drug screening for membrane protein targets.
J Struct Biol X. 2024 May 25;9:100100. doi: 10.1016/j.yjsbx.2024.100100. eCollection 2024 Jun.
3
A novel mouse model for N-terminal truncated Aβ2-x generation through meprin β overexpression in astrocytes.
Cell Mol Life Sci. 2024 Mar 13;81(1):139. doi: 10.1007/s00018-024-05139-w.
5
Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease.
Annu Rev Biophys. 2024 Jul;53(1):455-486. doi: 10.1146/annurev-biophys-062823-023436. Epub 2024 Jun 28.
6
Lipid Peroxidation Drives Liquid-Liquid Phase Separation and Disrupts Raft Protein Partitioning in Biological Membranes.
J Am Chem Soc. 2024 Jan 17;146(2):1374-1387. doi: 10.1021/jacs.3c10132. Epub 2024 Jan 3.
7
The Roles of the Amyloid Beta Monomers in Physiological and Pathological Conditions.
Biomedicines. 2023 May 10;11(5):1411. doi: 10.3390/biomedicines11051411.
9
Contribution of hyperglycemia-induced changes in microglia to Alzheimer's disease pathology.
Pharmacol Rep. 2022 Oct;74(5):832-846. doi: 10.1007/s43440-022-00405-9. Epub 2022 Aug 31.

本文引用的文献

1
Dementia in Down syndrome: unique insights for Alzheimer disease research.
Nat Rev Neurol. 2019 Mar;15(3):135-147. doi: 10.1038/s41582-018-0132-6.
3
Recognition of the amyloid precursor protein by human γ-secretase.
Science. 2019 Feb 15;363(6428). doi: 10.1126/science.aaw0930. Epub 2019 Jan 10.
4
A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor.
J Cell Biol. 2019 Feb 4;218(2):644-663. doi: 10.1083/jcb.201806205. Epub 2019 Jan 9.
5
A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease.
Nat Rev Neurol. 2019 Feb;15(2):73-88. doi: 10.1038/s41582-018-0116-6.
6
Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis.
Chem Rev. 2019 May 8;119(9):5537-5606. doi: 10.1021/acs.chemrev.8b00532. Epub 2019 Jan 4.
7
Rescue of Transgenic Alzheimer's Pathophysiology by Polymeric Cellular Prion Protein Antagonists.
Cell Rep. 2019 Jan 2;26(1):145-158.e8. doi: 10.1016/j.celrep.2018.12.021.
8
Somatic APP gene recombination in Alzheimer's disease and normal neurons.
Nature. 2018 Nov;563(7733):639-645. doi: 10.1038/s41586-018-0718-6. Epub 2018 Nov 21.
9
The Alzheimer's gamble.
Science. 2018 Aug 31;361(6405):838-841. doi: 10.1126/science.361.6405.838.
10
Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease?
J Biol Chem. 2018 Oct 5;293(40):15419-15428. doi: 10.1074/jbc.R118.003999. Epub 2018 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验