Suppr超能文献

介孔硅纳米粒子在靶向刺激响应药物传递中的研究进展:最新研究。

Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update.

机构信息

a Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica , Universidad Complutense de Madrid , Madrid , Spain.

b Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12) , Madrid , Spain.

出版信息

Expert Opin Drug Deliv. 2019 Apr;16(4):415-439. doi: 10.1080/17425247.2019.1598375. Epub 2019 Apr 22.

Abstract

INTRODUCTION

Mesoporous silica nanoparticles (MSNs) are outstanding nanoplatforms for drug delivery. Herein, the most recent advances to turn MSN-based carriers into minimal side effect drug delivery agents are covered.

AREAS COVERED

This review summarizes the scientific advances dealing with MSNs for targeted and stimuli-responsive drug delivery since 2015. Delivery aspects to diseased tissues together with approaches to obtain smart MSNs able to respond to internal or external stimuli and their applications are here described. Special emphasis is done on the combination of two or more stimuli on the same nanoplatform and on combined drug therapy.

EXPERT OPINION

The use of MSNs in nanomedicine is a promising research field because they are outstanding platforms for treating different pathologies. This is possible thanks to their structural, chemical, physical and biological properties. However, there are certain issues that should be overcome to improve the suitability of MSNs for clinical applications. All materials must be properly characterized prior to their in vivo evaluation; furthermore, preclinical in vivo studies need to be standardized to demonstrate the MSNs clinical translation potential.

摘要

简介

介孔硅纳米粒子(MSNs)是药物输送的杰出纳米平台。本文综述了 2015 年以来将基于 MSN 的载体转化为最小副作用药物输送剂的最新进展。本文描述了针对疾病组织的输送方法以及获得能够响应内部或外部刺激的智能 MSN 的方法及其应用。特别强调了在同一纳米平台上结合两种或多种刺激以及联合药物治疗的方法。

专家意见

MSNs 在纳米医学中的应用是一个很有前途的研究领域,因为它们是治疗不同疾病的优秀平台。这要归功于它们的结构、化学、物理和生物学特性。然而,为了提高 MSNs 用于临床应用的适用性,仍需要克服一些问题。所有材料在进行体内评价之前都必须进行适当的表征;此外,需要对临床前体内研究进行标准化,以证明 MSNs 的临床转化潜力。

相似文献

1
Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update.
Expert Opin Drug Deliv. 2019 Apr;16(4):415-439. doi: 10.1080/17425247.2019.1598375. Epub 2019 Apr 22.
3
Smart Mesoporous Silica Nanoparticles in Cancer: Diagnosis, Treatment, Immunogenicity, and Clinical Translation.
Small. 2025 Feb;21(7):e2408898. doi: 10.1002/smll.202408898. Epub 2025 Jan 22.
4
Mesoporous silica nanoparticles for therapeutic/diagnostic applications.
Biomed Pharmacother. 2019 Jan;109:1100-1111. doi: 10.1016/j.biopha.2018.10.167. Epub 2018 Nov 6.
5
Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery.
Expert Opin Drug Deliv. 2015 Feb;12(2):319-37. doi: 10.1517/17425247.2014.953051. Epub 2014 Nov 25.
7
Mesoporous Silica Nanoparticles: Drug Delivery Vehicles for Antidiabetic Molecules.
Chembiochem. 2023 Apr 3;24(7):e202200672. doi: 10.1002/cbic.202200672. Epub 2023 Mar 10.
8
Mesoporous silica nanoparticles in nanomedicine applications.
J Mater Sci Mater Med. 2018 May 8;29(5):65. doi: 10.1007/s10856-018-6069-x.
9
Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery.
Adv Mater. 2012 Mar 22;24(12):1504-34. doi: 10.1002/adma.201104763. Epub 2012 Feb 29.

引用本文的文献

1
Regenerative medicine: Hydrogels and mesoporous silica nanoparticles.
Mater Today Bio. 2024 Nov 14;29:101342. doi: 10.1016/j.mtbio.2024.101342. eCollection 2024 Dec.
3
Application of nanoparticles in breast cancer treatment: a systematic review.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Sep;397(9):6459-6505. doi: 10.1007/s00210-024-03082-y. Epub 2024 May 3.
4
Novel Antibacterial Agents 2022.
Pharmaceuticals (Basel). 2024 Mar 13;17(3):370. doi: 10.3390/ph17030370.
5
Tunable Release of Calcium from Chitosan-Coated Bioglass.
Pharmaceutics. 2023 Dec 27;16(1):39. doi: 10.3390/pharmaceutics16010039.
8
Physical stimuli-emitting scaffolds: The role of piezoelectricity in tissue regeneration.
Mater Today Bio. 2023 Jul 20;22:100740. doi: 10.1016/j.mtbio.2023.100740. eCollection 2023 Oct.
10
Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance.
Front Microbiol. 2023 Apr 21;14:1135579. doi: 10.3389/fmicb.2023.1135579. eCollection 2023.

本文引用的文献

3
Antibody-conjugated mesoporous silica nanoparticles for brain microvessel endothelial cell targeting.
J Mater Chem B. 2017 Oct 7;5(37):7721-7735. doi: 10.1039/c7tb01385j. Epub 2017 Sep 12.
4
Peptides for tumor-specific drug targeting: state of the art and beyond.
J Mater Chem B. 2017 Jun 21;5(23):4348-4364. doi: 10.1039/c7tb00318h. Epub 2017 Mar 6.
5
A pH-responsive nanocontainer based on hydrazone-bearing hollow silica nanoparticles for targeted tumor therapy.
J Mater Chem B. 2016 Jul 14;4(26):4594-4604. doi: 10.1039/c6tb01050d. Epub 2016 Jun 16.
6
A new targeting agent for the selective drug delivery of nanocarriers for treating neuroblastoma.
J Mater Chem B. 2015 Jun 28;3(24):4831-4842. doi: 10.1039/c5tb00287g. Epub 2015 May 29.
7
Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxic antitumoral therapy.
J Mater Chem B. 2015 Jul 28;3(28):5746-5752. doi: 10.1039/c5tb00304k. Epub 2015 Jun 18.
8
Using oxidant susceptibility of thiol stabilized nanoparticles to develop an inflammation triggered drug release system.
J Mater Chem B. 2015 Feb 28;3(8):1597-1604. doi: 10.1039/c4tb01709a. Epub 2015 Jan 16.
9
A UCN@mSiO@cross-linked lipid with high steric stability as a NIR remote controlled-release nanocarrier for photodynamic therapy.
J Mater Chem B. 2015 May 7;3(17):3531-3540. doi: 10.1039/c5tb00240k. Epub 2015 Mar 25.
10
Non-peptidic guanidinium-functionalized silica nanoparticles as selective mitochondria-targeting drug nanocarriers.
J Mater Chem B. 2018 Sep 28;6(36):5698-5707. doi: 10.1039/c8tb01358f. Epub 2018 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验