Suppr超能文献

可生物降解的仿生铜/锰硅纳米球用于化学动力学/光动力学协同治疗,同时耗尽谷胱甘肽并缓解缺氧。

Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief.

机构信息

Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China.

Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China.

出版信息

ACS Nano. 2019 Apr 23;13(4):4267-4277. doi: 10.1021/acsnano.8b09387. Epub 2019 Mar 26.

Abstract

The integration of reactive oxygen species (ROS)-involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) holds great promise for enhanced anticancer effects. Herein, we report biodegradable cancer cell membrane-coated mesoporous copper/manganese silicate nanospheres (mCMSNs) with homotypic targeting ability to the cancer cell lines and enhanced ROS generation through singlet oxygen (O) production and glutathione (GSH)-activated Fenton reaction, showing excellent CDT/PDT synergistic therapeutic effects. We demonstrate that mCMSNs are able to relieve the tumor hypoxia microenvironment by catalytic decomposition of endogenous HO to O and further react with O to produce toxic O with a 635 nm laser irradiation. GSH-triggered mCMSNs biodegradation can simultaneously generate Fenton-like Cu and Mn ions and deplete GSH for efficient hydroxyl radical (•OH) production. The specific recognition and homotypic targeting ability to the cancer cells were also revealed. Notably, relieving hypoxia and GSH depletion disrupts the tumor microenvironment (TME) and cellular antioxidant defense system, achieving exceptional cancer-targeting therapeutic effects in vitro and in vivo. The cancer cells growth was significantly inhibited. Moreover, the released Mn can also act as an advanced contrast agent for cancer magnetic resonance imaging (MRI). Thus, together with photosensitizers, Fenton agent provider and MRI contrast effects along with the modulating of the TME allow mCMSNs to realize MRI-monitored enhanced CDT/PDT synergistic therapy. It provides a paradigm to rationally design TME-responsive and ROS-involved therapeutic strategies based on a single polymetallic silicate nanomaterial with enhanced anticancer effects.

摘要

活性氧(ROS)参与的光动力疗法(PDT)和化学动力学疗法(CDT)的整合具有增强抗癌效果的巨大潜力。在此,我们报告了具有同型靶向癌细胞系能力的可生物降解的癌细胞膜包覆的介孔铜/锰硅纳米球(mCMSNs),通过产生活性氧(O)和谷胱甘肽(GSH)激活的芬顿反应增强 ROS 生成,表现出优异的 CDT/PDT 协同治疗效果。我们证明 mCMSNs 能够通过催化分解内源性 HO 来缓解肿瘤缺氧微环境产生 O,并且进一步与 O 反应产生具有 635nm 激光照射的毒性 O。GSH 触发的 mCMSNs 生物降解可以同时产生芬顿样 Cu 和 Mn 离子并耗尽 GSH 以高效产生羟基自由基(•OH)。还揭示了对癌细胞的特异性识别和同型靶向能力。值得注意的是,缓解缺氧和 GSH 耗竭破坏了肿瘤微环境(TME)和细胞抗氧化防御系统,在体外和体内实现了卓越的癌症靶向治疗效果。癌细胞的生长受到显著抑制。此外,释放的 Mn 还可以作为癌症磁共振成像(MRI)的先进造影剂。因此,与光敏剂、芬顿试剂提供剂以及 MRI 对比效果一起,以及 TME 的调节,使得 mCMSNs 能够实现 MRI 监测的增强 CDT/PDT 协同治疗。它为基于单个多金属硅酸盐纳米材料设计增强抗癌效果的 TME 响应和 ROS 参与的治疗策略提供了范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验