Suppr超能文献

晚期糖基化终产物受体(RAGE)和 DIAPH1:在中枢神经系统疾病中的血管和神经炎症功能障碍的意义。

The Receptor for Advanced Glycation End Products (RAGE) and DIAPH1: Implications for vascular and neuroinflammatory dysfunction in disorders of the central nervous system.

机构信息

Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA.

Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA.

出版信息

Neurochem Int. 2019 Jun;126:154-164. doi: 10.1016/j.neuint.2019.03.012. Epub 2019 Mar 20.

Abstract

The Receptor for Advanced Glycation End Products (RAGE) is expressed by multiple cell types in the brain and spinal cord that are linked to the pathogenesis of neurovascular and neurodegenerative disorders, including neurons, glia (microglia and astrocytes) and vascular cells (endothelial cells, smooth muscle cells and pericytes). Mounting structural and functional evidence implicates the interaction of the RAGE cytoplasmic domain with the formin, Diaphanous1 (DIAPH1), as the key cytoplasmic hub for RAGE ligand-mediated activation of cellular signaling. In aging and diabetes, the ligands of the receptor abound, both in the central nervous system (CNS) and in the periphery. Such accumulation of RAGE ligands triggers multiple downstream events, including upregulation of RAGE itself. Once set in motion, cell intrinsic and cell-cell communication mechanisms, at least in part via RAGE, trigger dysfunction in the CNS. A key outcome of endothelial dysfunction is reduction in cerebral blood flow and increased permeability of the blood brain barrier, conditions that facilitate entry of activated leukocytes into the CNS, thereby amplifying primary nodes of CNS cellular stress. This contribution details a review of the ligands of RAGE, the mechanisms and consequences of RAGE signal transduction, and cites multiple examples of published work in which RAGE contributes to the pathogenesis of neurovascular perturbation. Insights into potential therapeutic modalities targeting the RAGE signal transduction axis for disorders of CNS vascular dysfunction and neurodegeneration are also discussed.

摘要

晚期糖基化终产物受体(RAGE)在脑和脊髓中多种细胞类型中表达,这些细胞与神经血管和神经退行性疾病的发病机制有关,包括神经元、神经胶质(小胶质细胞和星形胶质细胞)和血管细胞(内皮细胞、平滑肌细胞和周细胞)。越来越多的结构和功能证据表明,RAGE 细胞质结构域与formin、Diaphanous1(DIAPH1)相互作用,是 RAGE 配体介导的细胞信号激活的关键细胞质枢纽。在衰老和糖尿病中,受体的配体在中枢神经系统(CNS)和外周大量存在。这种 RAGE 配体的积累触发了多种下游事件,包括 RAGE 自身的上调。一旦开始,细胞内在和细胞间通讯机制,至少部分通过 RAGE,引发 CNS 功能障碍。内皮功能障碍的一个关键结果是脑血流减少和血脑屏障通透性增加,这些条件有利于激活的白细胞进入中枢神经系统,从而放大中枢神经系统细胞应激的主要节点。这篇综述详细介绍了 RAGE 的配体、RAGE 信号转导的机制和后果,并引用了多篇已发表的工作,其中 RAGE 有助于神经血管功能障碍和神经退行性疾病的发病机制。还讨论了针对中枢神经系统血管功能障碍和神经退行性疾病的 RAGE 信号转导轴的潜在治疗方法的见解。

相似文献

2
Glycation & the RAGE axis: targeting signal transduction through DIAPH1.
Expert Rev Proteomics. 2017 Feb;14(2):147-156. doi: 10.1080/14789450.2017.1271719. Epub 2016 Dec 22.
3
The RAGE/DIAPH1 axis: mediator of obesity and proposed biomarker of human cardiometabolic disease.
Cardiovasc Res. 2024 Feb 17;119(18):2813-2824. doi: 10.1093/cvr/cvac175.
4
The RAGE/DIAPH1 Signaling Axis & Implications for the Pathogenesis of Diabetic Complications.
Int J Mol Sci. 2022 Apr 21;23(9):4579. doi: 10.3390/ijms23094579.
6
RAGE/DIAPH1 and atherosclerosis through an evolving lens: Viewing the cell from the "Inside - Out".
Atherosclerosis. 2024 Jul;394. doi: 10.1016/j.atherosclerosis.2023.117304. Epub 2023 Sep 21.
7
Preventing activation of receptor for advanced glycation endproducts in Alzheimer's disease.
Curr Drug Targets CNS Neurol Disord. 2005 Jun;4(3):249-66. doi: 10.2174/1568007054038210.
10
The cross-talk between RAGE and DIAPH1 in neurological complications of diabetes: A review.
Eur J Neurosci. 2021 Sep;54(6):5982-5999. doi: 10.1111/ejn.15433. Epub 2021 Sep 6.

引用本文的文献

2
Inflammaging and Brain Aging.
Int J Mol Sci. 2024 Sep 30;25(19):10535. doi: 10.3390/ijms251910535.
5
TAT-W61 peptide attenuates neuronal injury through blocking the binding of S100b to the V-domain of Rage during ischemic stroke.
J Mol Med (Berl). 2024 Feb;102(2):231-245. doi: 10.1007/s00109-023-02402-8. Epub 2023 Dec 5.
6
Role of neuroinflammation in neurodegeneration development.
Signal Transduct Target Ther. 2023 Jul 12;8(1):267. doi: 10.1038/s41392-023-01486-5.
7
Association between DIAPH1 variant and posterior circulation involvement with Moyamoya disease.
Sci Rep. 2023 Jul 3;13(1):10732. doi: 10.1038/s41598-023-37665-1.
8
PathwayKO: An integrated platform for deciphering the systems-level signaling pathways.
Front Immunol. 2023 Mar 23;14:1103392. doi: 10.3389/fimmu.2023.1103392. eCollection 2023.
9
Acute Methylglyoxal-Induced Damage in Blood-Brain Barrier and Hippocampal Tissue.
Neurotox Res. 2022 Oct;40(5):1337-1347. doi: 10.1007/s12640-022-00571-x. Epub 2022 Sep 3.
10
The Role of Microglia in Alzheimer's Disease From the Perspective of Immune Inflammation and Iron Metabolism.
Front Aging Neurosci. 2022 Jun 30;14:888989. doi: 10.3389/fnagi.2022.888989. eCollection 2022.

本文引用的文献

1
CRISPR/Cas9 Edited sRAGE-MSCs Protect Neuronal Death in Parkinson’s Disease Model.
Int J Stem Cells. 2019 Mar 30;12(1):114-124. doi: 10.15283/ijsc18110.
2
Blockade of receptor for advanced glycation end products promotes oligodendrocyte autophagy in spinal cord injury.
Neurosci Lett. 2019 Apr 17;698:198-203. doi: 10.1016/j.neulet.2019.01.030. Epub 2019 Jan 17.
3
Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction.
Nat Med. 2019 Feb;25(2):270-276. doi: 10.1038/s41591-018-0297-y. Epub 2019 Jan 14.
4
Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier.
Front Neurosci. 2018 Dec 11;12:930. doi: 10.3389/fnins.2018.00930. eCollection 2018.
5
The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration.
J Alzheimers Dis Parkinsonism. 2018;8(1). doi: 10.4172/2161-0460.1000421. Epub 2018 Jan 24.
6
Innate Immunity Cells and the Neurovascular Unit.
Int J Mol Sci. 2018 Dec 3;19(12):3856. doi: 10.3390/ijms19123856.
7
Vascular and Neurogenic Rejuvenation in Aging Mice by Modulation of ASM.
Neuron. 2018 Nov 7;100(3):762. doi: 10.1016/j.neuron.2018.10.038.
8
Dysregulation of Astrocytic HMGB1 Signaling in Amyotrophic Lateral Sclerosis.
Front Neurosci. 2018 Aug 29;12:622. doi: 10.3389/fnins.2018.00622. eCollection 2018.
9
Deletion of the formin Diaph1 protects from structural and functional abnormalities in the murine diabetic kidney.
Am J Physiol Renal Physiol. 2018 Dec 1;315(6):F1601-F1612. doi: 10.1152/ajprenal.00075.2018. Epub 2018 Aug 22.
10
RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer-a Review.
Horm Cancer. 2018 Oct;9(5):295-325. doi: 10.1007/s12672-018-0342-9. Epub 2018 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验