Suppr超能文献

一种构建基因组-连接体二部图模型的方法。

A method for building a genome-connectome bipartite graph model.

机构信息

The Mind Research Network, Albuquerque, NM, 87106, USA.

The Mind Research Network, Albuquerque, NM, 87106, USA.

出版信息

J Neurosci Methods. 2019 May 15;320:64-71. doi: 10.1016/j.jneumeth.2019.03.011. Epub 2019 Mar 19.

Abstract

It has been widely shown that genomic factors influence both risk for schizophrenia and variation in functional brain connectivity. Moreover, schizophrenia is characterized by disrupted brain connectivity. In this work, we proposed a genome-connectome bipartite graph model to perform imaging genomic analysis. Functional network connectivity (FNC) was estimated after decomposing resting state functional magnetic resonance imaging data from both healthy controls (HC) and patients with schizophrenia (SZ) into spatial brain components using group independent component analysis (G-ICA). Then 83 FNC connections showing a group difference (HC vs SZ) were selected as fMRI nodes, and eighty-one schizophrenia-related single nucleotide polymorphisms (SNPs) were selected as genetic nodes respectively in the bipartite graph. Edges connecting pairs of genetic and fMRI nodes were defined based on the SNP-FNC associations across subjects evaluated by a general linear model. Results show that some SNP nodes in the bipartite graph have a high degree implying they are influential in modulating brain connectivity and may be more strongly associated with the risk of schizophrenia than other SNPs. A bi-clustering analysis detected a cluster with 15 SNPs interacting with 38 FNC connections, most of which were within or between somato-motor and visual brain areas. This suggests that the activity of these brain regions may be related to common SNPs and provides insights into the pathology of schizophrenia. The findings suggest that the SNP-FNC bipartite graph approach is a novel model to investigate genetic influences on functional brain connectivity in mental illness.

摘要

已经广泛证明,基因组因素既影响精神分裂症的风险,也影响功能脑连接的变化。此外,精神分裂症的特征是大脑连接的中断。在这项工作中,我们提出了一种基因组-连接体二部图模型来进行成像基因组分析。使用组独立成分分析(G-ICA)将健康对照组(HC)和精神分裂症患者(SZ)的静息状态功能磁共振成像数据分解为空间大脑成分后,估计功能网络连接(FNC)。然后,选择 83 个显示组间差异(HC 与 SZ)的 FNC 连接作为 fMRI 节点,在二部图中分别选择 81 个与精神分裂症相关的单核苷酸多态性(SNP)作为遗传节点。连接遗传和 fMRI 节点对的边是根据通过广义线性模型评估的跨受试者 SNP-FNC 关联来定义的。结果表明,二部图中的一些 SNP 节点具有较高的度数,这意味着它们在调节大脑连接方面具有影响力,并且可能比其他 SNP 更强烈地与精神分裂症的风险相关。双聚类分析检测到一个包含 15 个 SNP 与 38 个 FNC 连接相互作用的簇,其中大多数 SNP 位于躯体感觉和视觉脑区内部或之间。这表明这些脑区的活动可能与常见的 SNP 有关,并为精神分裂症的发病机制提供了新的见解。研究结果表明,SNP-FNC 二部图方法是一种研究精神疾病中遗传对功能脑连接影响的新模型。

相似文献

1
A method for building a genome-connectome bipartite graph model.
J Neurosci Methods. 2019 May 15;320:64-71. doi: 10.1016/j.jneumeth.2019.03.011. Epub 2019 Mar 19.
2
A framework for linking resting-state chronnectome/genome features in schizophrenia: A pilot study.
Neuroimage. 2019 Jan 1;184:843-854. doi: 10.1016/j.neuroimage.2018.10.004. Epub 2018 Oct 6.
3
Association of rs1059004 polymorphism in the OLIG2 locus with whole-brain functional connectivity in first-episode schizophrenia.
Behav Brain Res. 2020 Feb 3;379:112392. doi: 10.1016/j.bbr.2019.112392. Epub 2019 Nov 27.
4
Magnetoencephalographic and functional MRI connectomics in schizophrenia via intra- and inter-network connectivity.
Neuroimage. 2017 Jan 15;145(Pt A):96-106. doi: 10.1016/j.neuroimage.2016.10.011. Epub 2016 Oct 8.
9
Multifaceted genomic risk for brain function in schizophrenia.
Neuroimage. 2012 Jul 16;61(4):866-75. doi: 10.1016/j.neuroimage.2012.03.022. Epub 2012 Mar 13.
10
Consistent Functional Connectivity Alterations in Schizophrenia Spectrum Disorder: A Multisite Study.
Schizophr Bull. 2017 Jul 1;43(4):914-924. doi: 10.1093/schbul/sbw145.

引用本文的文献

3
Biclustering data analysis: a comprehensive survey.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae342.
4
Biclustering fMRI time series: a comparative study.
BMC Bioinformatics. 2022 May 23;23(1):192. doi: 10.1186/s12859-022-04733-8.

本文引用的文献

1
Application of Graph Theory to Assess Static and Dynamic Brain Connectivity: Approaches for Building Brain Graphs.
Proc IEEE Inst Electr Electron Eng. 2018 May;106(5):886-906. doi: 10.1109/JPROC.2018.2825200. Epub 2018 Apr 25.
2
Shared Genetic Risk of Schizophrenia and Gray Matter Reduction in 6p22.1.
Schizophr Bull. 2019 Jan 1;45(1):222-232. doi: 10.1093/schbul/sby010.
3
Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges.
Int J Mol Sci. 2018 Jan 11;19(1):219. doi: 10.3390/ijms19010219.
6
Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study.
J Neurosci Methods. 2017 Nov 1;291:61-68. doi: 10.1016/j.jneumeth.2017.08.007. Epub 2017 Aug 12.
7
Heritability analysis with repeat measurements and its application to resting-state functional connectivity.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5521-5526. doi: 10.1073/pnas.1700765114. Epub 2017 May 8.
8
Individual parcellation of resting fMRI with a group functional connectivity prior.
Neuroimage. 2017 Aug 1;156:87-100. doi: 10.1016/j.neuroimage.2017.04.054. Epub 2017 May 3.
9
Heritability of the Effective Connectivity in the Resting-State Default Mode Network.
Cereb Cortex. 2017 Dec 1;27(12):5626-5634. doi: 10.1093/cercor/bhw332.
10
Multi-scale brain networks.
Neuroimage. 2017 Oct 15;160:73-83. doi: 10.1016/j.neuroimage.2016.11.006. Epub 2016 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验