Suppr超能文献

Ga-NODAGA-Indole:一种用于肺纤维化分子成像的赖氨酸反应正电子发射断层扫描探针。

Ga-NODAGA-Indole: An Allysine-Reactive Positron Emission Tomography Probe for Molecular Imaging of Pulmonary Fibrogenesis.

机构信息

The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology , Massachusetts General Hospital (MGH) & Harvard Medical School (HMS) , Charlestown , Massachusetts 02129 , United States.

Division of Thoracic Surgery , MGH & HMS , Boston , Massachusetts 02114 , United States.

出版信息

J Am Chem Soc. 2019 Apr 10;141(14):5593-5596. doi: 10.1021/jacs.8b12342. Epub 2019 Mar 27.

Abstract

Oxidized collagen, wherein lysine residues are converted to the aldehyde allysine, is a universal feature of fibrogenesis, i.e. actively progressive fibrosis. Here we report the small molecule, allysine-binding positron emission tomography probe, Ga-NODAGA-indole, that can noninvasively detect and quantify pulmonary fibrogenesis. We demonstrate that the uptake of Ga-NODAGA-indole in actively fibrotic lungs is 7-fold higher than in control groups and that uptake is linearly correlated ( R = 0.98) with the concentration of lung allysine.

摘要

氧化胶原蛋白,其中赖氨酸残基转化为醛基丙烯醛,是纤维发生的普遍特征,即活跃进行的纤维化。在这里,我们报告了小分子丙烯醛结合正电子发射断层扫描探针 Ga-NODAGA-吲哚,它可以非侵入性地检测和定量肺纤维化。我们证明,在活跃纤维化的肺中,Ga-NODAGA-吲哚的摄取量比对照组高 7 倍,并且摄取量与肺丙烯醛的浓度呈线性相关(R = 0.98)。

相似文献

1
Ga-NODAGA-Indole: An Allysine-Reactive Positron Emission Tomography Probe for Molecular Imaging of Pulmonary Fibrogenesis.
J Am Chem Soc. 2019 Apr 10;141(14):5593-5596. doi: 10.1021/jacs.8b12342. Epub 2019 Mar 27.
2
68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers.
Nucl Med Biol. 2012 May;39(4):560-9. doi: 10.1016/j.nucmedbio.2011.10.011. Epub 2011 Dec 14.
5
⁶⁸Ga-NODAGA-VEGF₁₂₁ for in vivo imaging of VEGF receptor expression.
Nucl Med Biol. 2014 Jan;41(1):51-7. doi: 10.1016/j.nucmedbio.2013.09.005. Epub 2013 Oct 8.
7
In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates.
Mol Pharm. 2012 May 7;9(5):1136-45. doi: 10.1021/mp200418f. Epub 2012 Apr 23.
8
Preparation of a Dithiol-Reactive Probe for PET Imaging of Cell Death.
Methods Mol Biol. 2019;1967:295-304. doi: 10.1007/978-1-4939-9187-7_19.

引用本文的文献

2
Molecular Imaging of Pulmonary Fibrosis.
J Nucl Med. 2025 Apr 1;66(4):502-505. doi: 10.2967/jnumed.124.267852.
3
Non-invasive in vivo imaging of changes in Collagen III turnover in myocardial fibrosis.
Npj Imaging. 2024;2(1):33. doi: 10.1038/s44303-024-00037-z. Epub 2024 Sep 17.
4
5
Noninvasive Quantification of Radiation-Induced Lung Injury Using a Targeted Molecular Imaging Probe.
Int J Radiat Oncol Biol Phys. 2024 Apr 1;118(5):1228-1239. doi: 10.1016/j.ijrobp.2023.11.032. Epub 2023 Dec 10.
6
Detection of Pulmonary Fibrosis with a Collagen-Mimetic Peptide.
ACS Sens. 2023 Nov 24;8(11):4008-4013. doi: 10.1021/acssensors.3c00717. Epub 2023 Nov 6.
7
Optimization of an Allysine-Targeted PET Probe for Quantifying Fibrogenesis in a Mouse Model of Pulmonary Fibrosis.
Mol Imaging Biol. 2023 Oct;25(5):944-953. doi: 10.1007/s11307-023-01845-2. Epub 2023 Aug 23.
8
Tailored Chemical Reactivity Probes for Systemic Imaging of Aldehydes in Fibroproliferative Diseases.
J Am Chem Soc. 2023 Sep 27;145(38):20825-20836. doi: 10.1021/jacs.3c04964. Epub 2023 Aug 17.
9
Lysyl Oxidases as Targets for Cancer Therapy and Diagnostic Imaging.
ChemMedChem. 2023 Sep 15;18(18):e202300331. doi: 10.1002/cmdc.202300331. Epub 2023 Sep 4.
10
Early Detection and Staging of Lung Fibrosis Enabled by Collagen-Targeted MRI Protein Contrast Agent.
Chem Biomed Imaging. 2023 May 22;1(3):268-285. doi: 10.1021/cbmi.3c00023. eCollection 2023 Jun 26.

本文引用的文献

1
Molecular imaging of fibrosis: recent advances and future directions.
J Clin Invest. 2019 Jan 2;129(1):24-33. doi: 10.1172/JCI122132.
2
Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers.
Chem Rev. 2019 Jan 23;119(2):957-1057. doi: 10.1021/acs.chemrev.8b00363. Epub 2018 Oct 16.
3
Molecular Probes for Imaging Fibrosis and Fibrogenesis.
Chemistry. 2019 Jan 24;25(5):1128-1141. doi: 10.1002/chem.201801578. Epub 2018 Nov 21.
4
Fibrosis imaging: Current concepts and future directions.
Adv Drug Deliv Rev. 2017 Nov 1;121:9-26. doi: 10.1016/j.addr.2017.10.013. Epub 2017 Nov 20.
5
High sensitivity HPLC method for determination of the allysine concentration in tissue by use of a naphthol derivative.
J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Oct 1;1064:7-13. doi: 10.1016/j.jchromb.2017.08.032. Epub 2017 Aug 26.
6
Molecular Magnetic Resonance Imaging of Lung Fibrogenesis with an Oxyamine-Based Probe.
Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9825-9828. doi: 10.1002/anie.201704773. Epub 2017 Jul 13.
7
Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis.
Chem Rev. 2017 Aug 9;117(15):10358-10376. doi: 10.1021/acs.chemrev.7b00090. Epub 2017 Jun 22.
8
Optimization of a Collagen-Targeted PET Probe for Molecular Imaging of Pulmonary Fibrosis.
J Nucl Med. 2017 Dec;58(12):1991-1996. doi: 10.2967/jnumed.117.193532. Epub 2017 Jun 13.
9
Molecular imaging of oxidized collagen quantifies pulmonary and hepatic fibrogenesis.
JCI Insight. 2017 Jun 2;2(11). doi: 10.1172/jci.insight.91506.
10
Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models.
Sci Transl Med. 2017 Apr 5;9(384). doi: 10.1126/scitranslmed.aaf4696.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验