Suppr超能文献

26S 蛋白酶体利用动力学门控来优先降解底物。

The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation.

机构信息

Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA.

Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA.

出版信息

Cell. 2019 Apr 4;177(2):286-298.e15. doi: 10.1016/j.cell.2019.02.031. Epub 2019 Mar 28.

Abstract

The 26S proteasome is the principal macromolecular machine responsible for protein degradation in eukaryotes. However, little is known about the detailed kinetics and coordination of the underlying substrate-processing steps of the proteasome, and their correlation with observed conformational states. Here, we used reconstituted 26S proteasomes with unnatural amino-acid-attached fluorophores in a series of FRET- and anisotropy-based assays to probe substrate-proteasome interactions, the individual steps of the processing pathway, and the conformational state of the proteasome itself. We develop a complete kinetic picture of proteasomal degradation, which reveals that the engagement steps prior to substrate commitment are fast relative to subsequent deubiquitination, translocation, and unfolding. Furthermore, we find that non-ideal substrates are rapidly rejected by the proteasome, which thus employs a kinetic proofreading mechanism to ensure degradation fidelity and substrate prioritization.

摘要

26S 蛋白酶体是真核生物中负责蛋白质降解的主要大分子机器。然而,对于蛋白酶体的基础底物加工步骤的详细动力学和协调,以及它们与观察到的构象状态的相关性,人们知之甚少。在这里,我们使用带有非天然氨基酸附着荧光团的重组 26S 蛋白酶体,通过一系列基于 FRET 和各向异性的测定法来探测底物-蛋白酶体相互作用、加工途径的各个步骤以及蛋白酶体自身的构象状态。我们描绘出了一幅完整的蛋白酶体降解动力学图景,揭示了在底物结合之前的结合步骤相对于随后的去泛素化、易位和展开是快速的。此外,我们发现非理想的底物会被蛋白酶体迅速拒绝,因此蛋白酶体采用了一种动力学校对机制来确保降解保真度和底物优先级。

相似文献

1
The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation.
Cell. 2019 Apr 4;177(2):286-298.e15. doi: 10.1016/j.cell.2019.02.031. Epub 2019 Mar 28.
2
An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.
Mol Cell. 2017 Sep 7;67(5):799-811.e8. doi: 10.1016/j.molcel.2017.07.023. Epub 2017 Aug 24.
3
Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome.
Nat Struct Mol Biol. 2015 Sep;22(9):712-9. doi: 10.1038/nsmb.3075. Epub 2015 Aug 24.
5
Structure and Function of the 26S Proteasome.
Annu Rev Biochem. 2018 Jun 20;87:697-724. doi: 10.1146/annurev-biochem-062917-011931. Epub 2018 Apr 13.
6
Conformational switching of the 26S proteasome enables substrate degradation.
Nat Struct Mol Biol. 2013 Jul;20(7):781-8. doi: 10.1038/nsmb.2616. Epub 2013 Jun 16.
7
Assaying degradation and deubiquitination of a ubiquitinated substrate by purified 26S proteasomes.
Methods Enzymol. 2005;398:391-9. doi: 10.1016/S0076-6879(05)98032-4.
8
The Cdc48-20S proteasome degrades a class of endogenous proteins in a ubiquitin-independent manner.
Biochem Biophys Res Commun. 2020 Mar 19;523(4):835-840. doi: 10.1016/j.bbrc.2020.01.030. Epub 2020 Jan 15.
9
Structure, Dynamics and Function of the 26S Proteasome.
Subcell Biochem. 2021;96:1-151. doi: 10.1007/978-3-030-58971-4_1.
10
Structural Snapshots of 26S Proteasome Reveal Tetraubiquitin-Induced Conformations.
Mol Cell. 2019 Mar 21;73(6):1150-1161.e6. doi: 10.1016/j.molcel.2019.01.018. Epub 2019 Feb 18.

引用本文的文献

1
Molecular features defining the efficiency of bioPROTACs.
Commun Biol. 2025 Jun 20;8(1):946. doi: 10.1038/s42003-025-08352-w.
2
The deubiquitinase Rpn11 functions as an allosteric ubiquitin sensor to promote substrate engagement by the 26S proteasome.
Cell Rep. 2025 Jun 24;44(6):115736. doi: 10.1016/j.celrep.2025.115736. Epub 2025 May 22.
3
A kinetic model for USP14 regulated substrate degradation in 26S proteasome.
PLoS Comput Biol. 2025 May 2;21(5):e1012761. doi: 10.1371/journal.pcbi.1012761. eCollection 2025 May.
4
NUB1 traps unfolded FAT10 for ubiquitin-independent degradation by the 26S proteasome.
Nat Struct Mol Biol. 2025 Apr 11. doi: 10.1038/s41594-025-01527-3.
5
UbiREAD deciphers proteasomal degradation code of homotypic and branched K48 and K63 ubiquitin chains.
Mol Cell. 2025 Apr 3;85(7):1467-1476.e6. doi: 10.1016/j.molcel.2025.02.021. Epub 2025 Mar 24.
6
Proteasome dynamics in response to metabolic changes.
Front Cell Dev Biol. 2025 Mar 3;13:1523382. doi: 10.3389/fcell.2025.1523382. eCollection 2025.
7
Recombinant Expression of Photo-crosslinkable 26S Proteasome Base Subcomplex.
bioRxiv. 2024 Dec 17:2024.12.16.628829. doi: 10.1101/2024.12.16.628829.
10
The clinicopathological and prognostic significance of PSMD14 in cancers based on bioinformatics and meta-analysis.
Future Sci OA. 2024 Dec 31;10(1):2409054. doi: 10.1080/20565623.2024.2409054. Epub 2024 Oct 11.

本文引用的文献

1
The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome.
Commun Biol. 2019 Jan 21;2:29. doi: 10.1038/s42003-019-0283-z. eCollection 2019.
2
Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome.
Nature. 2019 Jan;565(7737):49-55. doi: 10.1038/s41586-018-0736-4. Epub 2018 Nov 12.
3
Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation.
Science. 2018 Nov 30;362(6418). doi: 10.1126/science.aav0725. Epub 2018 Oct 11.
5
Structure and Function of the 26S Proteasome.
Annu Rev Biochem. 2018 Jun 20;87:697-724. doi: 10.1146/annurev-biochem-062917-011931. Epub 2018 Apr 13.
6
In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment.
Cell. 2018 Feb 8;172(4):696-705.e12. doi: 10.1016/j.cell.2017.12.030. Epub 2018 Feb 1.
7
Proteasomes tether to two distinct sites at the nuclear pore complex.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13726-13731. doi: 10.1073/pnas.1716305114. Epub 2017 Dec 11.
8
In Situ Architecture and Cellular Interactions of PolyQ Inclusions.
Cell. 2017 Sep 21;171(1):179-187.e10. doi: 10.1016/j.cell.2017.08.009. Epub 2017 Sep 7.
9
An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.
Mol Cell. 2017 Sep 7;67(5):799-811.e8. doi: 10.1016/j.molcel.2017.07.023. Epub 2017 Aug 24.
10
Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP•NPLOC4•UFD1L is enhanced by a mutation that causes multisystem proteinopathy.
Proc Natl Acad Sci U S A. 2017 May 30;114(22):E4380-E4388. doi: 10.1073/pnas.1706205114. Epub 2017 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验