Suppr超能文献

神经疾病中 RNA 代谢的紊乱及新兴治疗干预措施

Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions.

机构信息

Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.

Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.

出版信息

Neuron. 2019 Apr 17;102(2):294-320. doi: 10.1016/j.neuron.2019.03.014.

Abstract

RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.

摘要

RNA 结合蛋白通过控制 RNA 加工和运输来维持转录组的稳定性,对于其具有关键作用。这些蛋白的改变会影响 RNA 生命周期的多个步骤,导致各种分子表型,如异常的 RNA 剪接、运输和稳定性。RNA 结合蛋白的破坏和广泛的 RNA 加工缺陷被认为是神经疾病的关键决定因素。在这里,我们通过降低其表达水平、增加聚集倾向或被异常 RNA 隔离等方式,描述了神经紊乱中 RNA 结合蛋白的平衡失调的不同机制。所有这些机制都导致神经元功能改变,突出了神经元对 RNA 表达的有害变化的敏感性,以及 RNA 结合蛋白在维持神经元完整性方面的核心作用。还讨论了减轻或逆转神经疾病中 RNA 结合蛋白改变的新兴治疗方法。

相似文献

1
Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions.
Neuron. 2019 Apr 17;102(2):294-320. doi: 10.1016/j.neuron.2019.03.014.
2
Towards understanding RNA-mediated neurological disorders.
J Genet Genomics. 2014 Sep 20;41(9):473-84. doi: 10.1016/j.jgg.2014.08.003. Epub 2014 Aug 23.
3
Aberrant RNA processing events in neurological disorders.
Brain Res. 2010 Jun 18;1338:67-77. doi: 10.1016/j.brainres.2010.03.008. Epub 2010 Mar 10.
4
RNA-binding proteins in neurological diseases.
Sci China Life Sci. 2014 Apr;57(4):432-44. doi: 10.1007/s11427-014-4647-9.
5
RNA-binding proteins in neurological development and disease.
RNA Biol. 2021 Jul;18(7):972-987. doi: 10.1080/15476286.2020.1809186. Epub 2020 Aug 30.
7
C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
Autophagy. 2021 Nov;17(11):3306-3322. doi: 10.1080/15548627.2021.1872189. Epub 2021 Feb 26.
8
Local RNA translation at the synapse and in disease.
J Neurosci. 2011 Nov 9;31(45):16086-93. doi: 10.1523/JNEUROSCI.4105-11.2011.
10
ELAV proteins along evolution: back to the nucleus?
Mol Cell Neurosci. 2013 Sep;56:447-55. doi: 10.1016/j.mcn.2013.02.003. Epub 2013 Feb 22.

引用本文的文献

4
Disruption of hnRNP A2-mediated RNA dynamics by amyloid-β drives MBP increase in Alzheimer's disease.
Cell Mol Life Sci. 2025 Aug 2;82(1):298. doi: 10.1007/s00018-025-05823-5.
5
Decoding the interactions and functions of non-coding RNA with artificial intelligence.
Nat Rev Mol Cell Biol. 2025 Jun 19. doi: 10.1038/s41580-025-00857-w.
6
Global analysis of excitotoxicity-induced alterations in RNA structure and RNA-protein binding in neurons.
iScience. 2025 May 6;28(6):112595. doi: 10.1016/j.isci.2025.112595. eCollection 2025 Jun 20.
7
RNA-binding proteins in ALS and FTD: from pathogenic mechanisms to therapeutic insights.
Mol Neurodegener. 2025 Jun 4;20(1):64. doi: 10.1186/s13024-025-00851-y.
8
SFRS8 Regulates Memory by Modulating RNA Splicing of Synaptic Genes.
Mol Neurobiol. 2025 May 26. doi: 10.1007/s12035-025-05036-8.
9
Centrosomes and cilia in neurodegeneration: main actors or mere spectators?
Open Biol. 2025 May;15(5):240317. doi: 10.1098/rsob.240317. Epub 2025 May 21.
10
SOX7: Autism associated gene identified by analysis of multi-Omics data.
PLoS One. 2025 May 15;20(5):e0320096. doi: 10.1371/journal.pone.0320096. eCollection 2025.

本文引用的文献

1
Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration.
Nat Neurosci. 2019 Feb;22(2):180-190. doi: 10.1038/s41593-018-0293-z. Epub 2019 Jan 14.
2
ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair.
Nat Neurosci. 2019 Feb;22(2):167-179. doi: 10.1038/s41593-018-0300-4. Epub 2019 Jan 14.
3
TDP-43 and RNA form amyloid-like myo-granules in regenerating muscle.
Nature. 2018 Nov;563(7732):508-513. doi: 10.1038/s41586-018-0665-2. Epub 2018 Oct 31.
4
ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS.
Neuron. 2018 Nov 21;100(4):816-830.e7. doi: 10.1016/j.neuron.2018.09.044. Epub 2018 Oct 18.
5
Programmed DNA destruction by miniature CRISPR-Cas14 enzymes.
Science. 2018 Nov 16;362(6416):839-842. doi: 10.1126/science.aav4294. Epub 2018 Oct 18.
6
Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease.
Neuron. 2018 Sep 5;99(5):925-940.e7. doi: 10.1016/j.neuron.2018.07.039.
7
Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization.
Mol Cell. 2018 Sep 6;71(5):703-717.e9. doi: 10.1016/j.molcel.2018.07.002. Epub 2018 Aug 9.
8
A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins.
Cell. 2018 Jul 26;174(3):688-699.e16. doi: 10.1016/j.cell.2018.06.006. Epub 2018 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验