Suppr超能文献

端到端可微分蛋白质结构学习

End-to-End Differentiable Learning of Protein Structure.

机构信息

Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Cell Syst. 2019 Apr 24;8(4):292-301.e3. doi: 10.1016/j.cels.2019.03.006. Epub 2019 Apr 17.

Abstract

Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1-2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design.

摘要

从序列预测蛋白质结构是生物化学的核心挑战。共进化方法显示出前景,但明确的序列到结构的映射仍然难以捉摸。深度学习的进步用可微分的模型替代了复杂的、人工设计的流水线,并进行端到端优化,这表明类似地重新制定结构预测具有潜在的好处。在这里,我们引入了一个用于蛋白质结构学习的端到端可微分模型。该模型通过几何单元来耦合局部和全局蛋白质结构,这些几何单元在不违反局部共价化学的情况下优化全局几何形状。我们使用两个具有挑战性的任务来测试我们的模型:在没有共进化数据的情况下预测新的折叠结构,以及在没有结构模板的情况下预测已知的折叠结构。在第一个任务中,该模型达到了最先进的准确性,在第二个任务中,它的误差在 1-2Å 以内;使用共进化和实验模板的竞争方法已经经过多年的改进,因此可微分方法很可能还有很大的改进空间,其应用范围从药物发现到蛋白质设计。

相似文献

1
End-to-End Differentiable Learning of Protein Structure.
Cell Syst. 2019 Apr 24;8(4):292-301.e3. doi: 10.1016/j.cels.2019.03.006. Epub 2019 Apr 17.
2
Protein sequence-to-structure learning: Is this the end(-to-end revolution)?
Proteins. 2021 Dec;89(12):1770-1786. doi: 10.1002/prot.26235. Epub 2021 Sep 22.
3
Toward the solution of the protein structure prediction problem.
J Biol Chem. 2021 Jul;297(1):100870. doi: 10.1016/j.jbc.2021.100870. Epub 2021 Jun 11.
4
State-of-the-art web services for de novo protein structure prediction.
Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa139.
5
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
6
Machine learning in protein structure prediction.
Curr Opin Chem Biol. 2021 Dec;65:1-8. doi: 10.1016/j.cbpa.2021.04.005. Epub 2021 May 18.
7
Illuminating the "Twilight Zone": Advances in Difficult Protein Modeling.
Methods Mol Biol. 2023;2627:25-40. doi: 10.1007/978-1-0716-2974-1_2.
8
RPITER: A Hierarchical Deep Learning Framework for ncRNA⁻Protein Interaction Prediction.
Int J Mol Sci. 2019 Mar 1;20(5):1070. doi: 10.3390/ijms20051070.
9
Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
Proteins. 2019 Dec;87(12):1165-1178. doi: 10.1002/prot.25697. Epub 2019 Apr 25.
10
DeepLoc: prediction of protein subcellular localization using deep learning.
Bioinformatics. 2017 Nov 1;33(21):3387-3395. doi: 10.1093/bioinformatics/btx431.

引用本文的文献

2
Chemosensory Receptors in Vertebrates: Structure and Computational Modeling Insights.
Int J Mol Sci. 2025 Jul 10;26(14):6605. doi: 10.3390/ijms26146605.
3
Role of artificial intelligence in revolutionizing drug discovery.
Fundam Res. 2024 May 9;5(3):1273-1287. doi: 10.1016/j.fmre.2024.04.021. eCollection 2025 May.
4
Multimeric protein interaction and complex prediction: Structure, dynamics and function.
Comput Struct Biotechnol J. 2025 May 16;27:1975-1997. doi: 10.1016/j.csbj.2025.05.009. eCollection 2025.
6
Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction.
Methods Mol Biol. 2025;2867:121-139. doi: 10.1007/978-1-0716-4196-5_7.
8
How the technologies behind self-driving cars, social networks, ChatGPT, and DALL-E2 are changing structural biology.
Bioessays. 2025 Jan;47(1):e2400155. doi: 10.1002/bies.202400155. Epub 2024 Oct 15.
10
Structure-based protein and small molecule generation using EGNN and diffusion models: A comprehensive review.
Comput Struct Biotechnol J. 2024 Jun 26;23:2779-2797. doi: 10.1016/j.csbj.2024.06.021. eCollection 2024 Dec.

本文引用的文献

1
ProteinNet: a standardized data set for machine learning of protein structure.
BMC Bioinformatics. 2019 Jun 11;20(1):311. doi: 10.1186/s12859-019-2932-0.
2
Parallelized Natural Extension Reference Frame: Parallelized Conversion from Internal to Cartesian Coordinates.
J Comput Chem. 2019 Mar 15;40(7):885-892. doi: 10.1002/jcc.25772. Epub 2019 Jan 7.
4
Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks.
Cell Syst. 2018 Jan 24;6(1):65-74.e3. doi: 10.1016/j.cels.2017.11.014. Epub 2017 Dec 20.
5
Evaluation of the template-based modeling in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):321-334. doi: 10.1002/prot.25425. Epub 2017 Dec 4.
6
Critical assessment of methods of protein structure prediction (CASP)-Round XII.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):7-15. doi: 10.1002/prot.25415. Epub 2017 Dec 15.
7
Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):136-151. doi: 10.1002/prot.25414. Epub 2017 Nov 14.
8
Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age.
Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):51-66. doi: 10.1002/prot.25407. Epub 2017 Nov 7.
9
Biological and functional relevance of CASP predictions.
Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):374-386. doi: 10.1002/prot.25396. Epub 2017 Oct 17.
10
Deep learning methods for protein torsion angle prediction.
BMC Bioinformatics. 2017 Sep 18;18(1):417. doi: 10.1186/s12859-017-1834-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验