Suppr超能文献

RAD52 和 dn53BP1 的异位表达可提高 CRISPR-Cas9 基因组编辑过程中的同源定向修复。

Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.

机构信息

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.

Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, MA, 02115, USA.

出版信息

Nat Biomed Eng. 2017 Nov;1(11):878-888. doi: 10.1038/s41551-017-0145-2. Epub 2017 Oct 9.

Abstract

Gene disruption by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) is highly efficient and relies on the error-prone non-homologous end-joining pathway. Conversely, precise gene editing requires homology-directed repair (HDR), which occurs at a lower frequency than non-homologous end-joining in mammalian cells. Here, by testing whether manipulation of DNA repair factors improves HDR efficacy, we show that transient ectopic co-expression of RAD52 and a dominant-negative form of tumour protein p53-binding protein 1 (dn53BP1) synergize to enable efficient HDR using a single-stranded oligonucleotide DNA donor template at multiple loci in human cells, including patient-derived induced pluripotent stem cells. Co-expression of RAD52 and dn53BP1 improves multiplexed HDR-mediated editing, whereas expression of RAD52 alone enhances HDR with Cas9 nickase. Our data show that the frequency of non-homologous end-joining-mediated double-strand break repair in the presence of these two factors is not suppressed and suggest that dn53BP1 competitively antagonizes 53BP1 to augment HDR in combination with RAD52. Importantly, co-expression of RAD52 and dn53BP1 does not alter Cas9 off-target activity. These findings support the use of RAD52 and dn53BP1 co-expression to overcome bottlenecks that limit HDR in precision genome editing.

摘要

通过成簇规律间隔短回文重复序列 (CRISPR)-CRISPR 相关蛋白 9 (Cas9) 进行基因敲除效率很高,并且依赖易错的非同源末端连接途径。相反,精确的基因编辑需要同源定向修复 (HDR),而在哺乳动物细胞中,HDR 的发生频率低于非同源末端连接。在这里,通过测试 DNA 修复因子的操纵是否能提高 HDR 的效率,我们表明,RAD52 和肿瘤蛋白 p53 结合蛋白 1 的显性失活形式 (dn53BP1) 的瞬时异位共表达协同作用,以在多个基因座中使用单链寡核苷酸 DNA 供体模板在人类细胞中,包括源自患者的诱导多能干细胞,实现高效的 HDR。RAD52 和 dn53BP1 的共表达可改善多重 HDR 介导的编辑,而单独表达 RAD52 可增强 Cas9 切口酶的 HDR。我们的数据表明,在这两种因子存在的情况下,非同源末端连接介导的双链断裂修复的频率没有受到抑制,并表明 dn53BP1 通过与 RAD52 竞争拮抗 53BP1 来增强 HDR。重要的是,RAD52 和 dn53BP1 的共表达不会改变 Cas9 的脱靶活性。这些发现支持使用 RAD52 和 dn53BP1 的共表达来克服限制精确基因组编辑中 HDR 的瓶颈。

相似文献

1
Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.
Nat Biomed Eng. 2017 Nov;1(11):878-888. doi: 10.1038/s41551-017-0145-2. Epub 2017 Oct 9.
2
Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
Int J Biochem Cell Biol. 2017 Nov;92:43-52. doi: 10.1016/j.biocel.2017.09.012. Epub 2017 Sep 18.
4
Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors.
Int J Biochem Cell Biol. 2020 Aug;125:105790. doi: 10.1016/j.biocel.2020.105790. Epub 2020 Jun 10.
5
Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency.
Nat Biotechnol. 2018 Jan;36(1):95-102. doi: 10.1038/nbt.4021. Epub 2017 Nov 27.
6
Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination.
BMC Biotechnol. 2020 Oct 23;20(1):57. doi: 10.1186/s12896-020-00650-x.
10
Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair.
Genome Res. 2018 Feb;28(2):223-230. doi: 10.1101/gr.226027.117. Epub 2017 Dec 22.

引用本文的文献

1
Metabolic constraint of human telomere length by nucleotide salvage efficiency.
Nat Commun. 2025 Mar 27;16(1):3000. doi: 10.1038/s41467-025-58221-7.
2
Recent advances in therapeutic gene-editing technologies.
Mol Ther. 2025 Jun 4;33(6):2619-2644. doi: 10.1016/j.ymthe.2025.03.026. Epub 2025 Mar 20.
3
Rescue of the disease-associated phenotype in CRISPR-corrected hiPSCs as a therapeutic approach for inherited retinal dystrophies.
Mol Ther Nucleic Acids. 2025 Feb 11;36(1):102482. doi: 10.1016/j.omtn.2025.102482. eCollection 2025 Mar 11.
4
Promotion or inhibition? This is a question in gene editing.
Mol Ther. 2025 Feb 5;33(2):444-446. doi: 10.1016/j.ymthe.2025.01.014. Epub 2025 Jan 21.
5
CRISPRoffT: comprehensive database of CRISPR/Cas off-targets.
Nucleic Acids Res. 2025 Jan 6;53(D1):D914-D924. doi: 10.1093/nar/gkae1025.
6
Epitranscriptome in action: RNA modifications in the DNA damage response.
Mol Cell. 2024 Oct 3;84(19):3610-3626. doi: 10.1016/j.molcel.2024.09.003.
8
Enhancing homology-directed repair efficiency with HDR-boosting modular ssDNA donor.
Nat Commun. 2024 Aug 10;15(1):6843. doi: 10.1038/s41467-024-50788-x.
9
Engineering single-cycle MeV vector for CRISPR-Cas9 gene editing.
Mol Ther Methods Clin Dev. 2024 Jun 24;32(3):101290. doi: 10.1016/j.omtm.2024.101290. eCollection 2024 Sep 12.
10
Exonuclease editor promotes precision of gene editing in mammalian cells.
BMC Biol. 2024 May 20;22(1):119. doi: 10.1186/s12915-024-01918-w.

本文引用的文献

1
mRNA-mediated glycoengineering ameliorates deficient homing of human stem cell-derived hematopoietic progenitors.
J Clin Invest. 2017 Jun 1;127(6):2433-2437. doi: 10.1172/JCI92030. Epub 2017 May 8.
2
In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration.
Nature. 2016 Dec 1;540(7631):144-149. doi: 10.1038/nature20565. Epub 2016 Nov 16.
3
CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.
Nature. 2016 Nov 17;539(7629):384-389. doi: 10.1038/nature20134. Epub 2016 Nov 7.
4
Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition.
Clin Cancer Res. 2017 May 1;23(9):2255-2266. doi: 10.1158/1078-0432.CCR-16-1300. Epub 2016 Nov 4.
5
Reappearance from Obscurity: Mammalian Rad52 in Homologous Recombination.
Genes (Basel). 2016 Sep 14;7(9):63. doi: 10.3390/genes7090063.
6
Regulation of Single-Strand Annealing and its Role in Genome Maintenance.
Trends Genet. 2016 Sep;32(9):566-575. doi: 10.1016/j.tig.2016.06.007. Epub 2016 Jul 19.
8
53BP1 fosters fidelity of homology-directed DNA repair.
Nat Struct Mol Biol. 2016 Aug;23(8):714-21. doi: 10.1038/nsmb.3251. Epub 2016 Jun 27.
10
Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases.
Cell Rep. 2016 Mar 8;14(9):2263-2272. doi: 10.1016/j.celrep.2016.02.018. Epub 2016 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验