Suppr超能文献

缺乏单酰甘油脂肪酶通过促进脂肪组织的脂质储存和肠道吸收不良来预防肝脂肪变性。

Lack of monoacylglycerol lipase prevents hepatic steatosis by favoring lipid storage in adipose tissue and intestinal malabsorption.

机构信息

Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.

Clinical Institute of Medical and Chemical Laboratory Diagnostics University Hospital Graz, Graz, Austria.

出版信息

J Lipid Res. 2019 Jul;60(7):1284-1292. doi: 10.1194/jlr.M093369. Epub 2019 May 2.

Abstract

Monoacylglycerol lipase (MGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. To examine the role of MGL in hepatic steatosis, WT and MGL KO (MGL) mice were challenged with a Western diet (WD) over 12 weeks. Lipid metabolism, inflammation, and fibrosis were assessed by serum biochemistry, histology, and gene-expression profiling of liver and adipose depots. Intestinal fat absorption was measured by gas chromatography. Primary adipocyte and 3T3-L1 cells were analyzed by flow cytometry and Western blot. Human hepatocytes were treated with MGL inhibitor JZL184. The absence of MGL protected mice from hepatic steatosis by repressing key lipogenic enzymes in liver (Srebp1c, Pparγ2, and diacylglycerol -acyltransferase 1), while promoting FA oxidation. Liver inflammation was diminished in MGL mice fed a WD, as evidenced by diminished epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 (F4/80) staining and C-C motif chemokine ligand 2 gene expression, whereas fibrosis remained unchanged. Absence of MGL promoted fat storage in gonadal white adipose tissue (gWAT) with increased lipogenesis and unchanged lipolysis, diminished inflammation in gWAT, and subcutaneous AT. Intestinal fat malabsorption prevented ectopic lipid accumulation in livers of MGL mice fed a WD. In vitro experiments demonstrated increased adipocyte size/lipid content driven by PPARγ. In conclusion, our data uncover that MGL deletion improves some aspects of nonalcoholic fatty liver disease by promoting lipid storage in gWAT and fat malabsorption.

摘要

单酰甘油脂肪酶(MGL)是单酰甘油降解的限速酶。为了研究 MGL 在肝脂肪变性中的作用,WT 和 MGL 基因敲除(MGL)小鼠接受了为期 12 周的西方饮食(WD)挑战。通过血清生化、肝和脂肪组织的组织学和基因表达谱分析评估脂质代谢、炎症和纤维化。通过气相色谱法测量肠道脂肪吸收。通过流式细胞术和 Western blot 分析原代脂肪细胞和 3T3-L1 细胞。用人 MGL 抑制剂 JZL184 处理人肝细胞。MGL 的缺失通过抑制肝中的关键脂质生成酶(Srebp1c、Pparγ2 和二酰基甘油 -酰基转移酶 1),同时促进 FA 氧化,从而保护小鼠免受肝脂肪变性。在 WD 喂养的 MGL 小鼠中,肝脏炎症减少,表现为表皮生长因子样模块包含粘蛋白样激素受体样 1(F4/80)染色和 C-C 基序趋化因子配体 2 基因表达减少,而纤维化保持不变。MGL 的缺失促进了性腺白色脂肪组织(gWAT)中的脂肪储存,导致脂肪生成增加和脂肪分解不变,gWAT 和皮下脂肪组织中的炎症减少。肠道脂肪吸收不良可防止 WD 喂养的 MGL 小鼠肝脏中异位脂质积累。体外实验表明,PPARγ 驱动脂肪细胞大小/脂质含量增加。总之,我们的数据揭示了 MGL 缺失通过促进 gWAT 中的脂质储存和脂肪吸收不良改善了非酒精性脂肪性肝病的某些方面。

相似文献

3
Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance.
J Biol Chem. 2011 May 20;286(20):17467-77. doi: 10.1074/jbc.M110.215434. Epub 2011 Mar 23.
4
Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice.
Metabolism. 2013 Nov;62(11):1651-61. doi: 10.1016/j.metabol.2013.06.012. Epub 2013 Aug 5.
5
Monoacylglycerol Lipase Inhibition Protects From Liver Injury in Mouse Models of Sclerosing Cholangitis.
Hepatology. 2020 May;71(5):1750-1765. doi: 10.1002/hep.30929. Epub 2019 Dec 30.
7
Impact of Reduced ATGL-Mediated Adipocyte Lipolysis on Obesity-Associated Insulin Resistance and Inflammation in Male Mice.
Endocrinology. 2015 Oct;156(10):3610-24. doi: 10.1210/en.2015-1322. Epub 2015 Jul 21.
8
Palmitoleic Acid Decreases Non-alcoholic Hepatic Steatosis and Increases Lipogenesis and Fatty Acid Oxidation in Adipose Tissue From Obese Mice.
Front Endocrinol (Lausanne). 2020 Sep 30;11:537061. doi: 10.3389/fendo.2020.537061. eCollection 2020.

引用本文的文献

1
Acetyl-11-keto-β-boswellic acid alleviates hepatic metabolic dysfunction by inhibiting MGLL activity.
J Lipid Res. 2025 May;66(5):100812. doi: 10.1016/j.jlr.2025.100812. Epub 2025 Apr 17.
2
Inter-individual variations in circadian misalignment-induced NAFLD pathophysiology in mice.
iScience. 2024 Feb 5;27(2):108934. doi: 10.1016/j.isci.2024.108934. eCollection 2024 Feb 16.
3
Novel Effect of -Coumaric Acid on Hepatic Lipolysis: Inhibition of Hepatic Lipid-Droplets.
Molecules. 2023 Jun 8;28(12):4641. doi: 10.3390/molecules28124641.
5
Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma.
Hepatology. 2025 Jan 1;81(1):269-287. doi: 10.1097/HEP.0000000000000479. Epub 2023 May 23.
6
New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases.
Front Pharmacol. 2023 Feb 2;14:1097835. doi: 10.3389/fphar.2023.1097835. eCollection 2023.
7
Traumatic brain injury alters the gut-derived serotonergic system and associated peripheral organs.
Biochim Biophys Acta Mol Basis Dis. 2022 Nov 1;1868(11):166491. doi: 10.1016/j.bbadis.2022.166491. Epub 2022 Jul 25.
8
[F]MAGL-4-11 positron emission tomography molecular imaging of monoacylglycerol lipase changes in preclinical liver fibrosis models.
Acta Pharm Sin B. 2022 Jan;12(1):308-315. doi: 10.1016/j.apsb.2021.07.007. Epub 2021 Jul 17.
10
Lipolysis: cellular mechanisms for lipid mobilization from fat stores.
Nat Metab. 2021 Nov;3(11):1445-1465. doi: 10.1038/s42255-021-00493-6. Epub 2021 Nov 19.

本文引用的文献

1
Inhibition of monoacylglycerol lipase, an anti-inflammatory and antifibrogenic strategy in the liver.
Gut. 2019 Mar;68(3):522-532. doi: 10.1136/gutjnl-2018-316137. Epub 2018 Oct 9.
3
Osteopontin-deficient progenitor cells display enhanced differentiation to adipocytes.
Obes Res Clin Pract. 2018 May-Jun;12(3):277-285. doi: 10.1016/j.orcp.2018.02.006. Epub 2018 Mar 6.
4
Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention.
Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):11-20. doi: 10.1038/nrgastro.2017.109. Epub 2017 Sep 20.
5
Monoacylglycerol signalling and ABHD6 in health and disease.
Diabetes Obes Metab. 2017 Sep;19 Suppl 1:76-89. doi: 10.1111/dom.13008.
7
Non-alcoholic fatty liver disease: An expanded review.
World J Hepatol. 2017 Jun 8;9(16):715-732. doi: 10.4254/wjh.v9.i16.715.
8
Adiponectin regulates AQP3 via PPARα in human hepatic stellate cells.
Biochem Biophys Res Commun. 2017 Aug 12;490(1):51-54. doi: 10.1016/j.bbrc.2017.06.009. Epub 2017 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验