Suppr超能文献

将ESKAPE病原体中的铁获取与生物膜形成联系起来,作为对抗抗生素耐药性的一种策略。

Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance.

作者信息

Post Savannah J, Shapiro Justin A, Wuest William M

机构信息

Department of Chemistry , Emory University , Atlanta , GA 30322 , USA . Email:

Antibiotic Resistance Center , Emory University School of Medicine , Atlanta , GA 30322 , USA.

出版信息

Medchemcomm. 2019 Mar 21;10(4):505-512. doi: 10.1039/c9md00032a. eCollection 2019 Apr 1.

Abstract

The rise of antibiotic resistant bacteria has become a problem of global concern. Of particular interest are the ESKAPE pathogens, species with high rates of multi-drug resistant infections. Novel antibiotic mechanisms of action are necessary to compliment traditional therapeutics. Recent research has focused on targeting virulence factors as a method of combatting infection without creating selective pressure for resistance or damaging the host commensal microbiome. Some investigations into one such virulence behavior, iron acquisition, have displayed additional effects on another virulence behavior, biofilm formation. The use of exogenous iron-chelators, gallium as an iron mimic, and inhibition of siderophore-mediated iron acquisition are all strategies for disturbing iron-homeostasis that have implicated effects on biofilms. However, the exact nature of this connection remains ambiguous. Herein we summarize these findings and identify opportunities for further investigation.

摘要

抗生素耐药细菌的出现已成为一个全球关注的问题。特别值得关注的是ESKAPE病原体,即具有高多重耐药感染率的物种。新型抗生素作用机制对于补充传统治疗方法是必要的。最近的研究集中在靶向毒力因子,作为一种对抗感染的方法,而不会产生耐药性的选择压力或损害宿主共生微生物群。对一种这样的毒力行为,即铁获取的一些研究,显示出对另一种毒力行为,即生物膜形成的额外影响。使用外源性铁螯合剂、镓作为铁模拟物以及抑制铁载体介导的铁获取,都是扰乱铁稳态的策略,这些策略对生物膜有牵连效应。然而,这种联系的确切性质仍然不明确。在此,我们总结这些发现并确定进一步研究的机会。

相似文献

1
Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance.
Medchemcomm. 2019 Mar 21;10(4):505-512. doi: 10.1039/c9md00032a. eCollection 2019 Apr 1.
2
Siderophore-Mediated Iron Acquisition Plays a Critical Role in Biofilm Formation and Survival of Within the Host.
Front Med (Lausanne). 2021 Dec 24;8:799227. doi: 10.3389/fmed.2021.799227. eCollection 2021.
4
Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa.
J Microbiol. 2018 Jul;56(7):449-457. doi: 10.1007/s12275-018-8114-3. Epub 2018 Jun 14.
5
Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles.
Microb Pathog. 2024 Sep;194:106842. doi: 10.1016/j.micpath.2024.106842. Epub 2024 Aug 6.
7
The Emerging Role of Iron Acquisition in Biofilm-Associated Infections.
Trends Microbiol. 2021 Sep;29(9):772-775. doi: 10.1016/j.tim.2021.02.009. Epub 2021 Mar 8.
8
Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation.
Appl Environ Microbiol. 2019 Jan 23;85(3). doi: 10.1128/AEM.02439-18. Print 2019 Feb 1.
9
CRISPR in Modulating Antibiotic Resistance of ESKAPE Pathogens.
Mol Biotechnol. 2023 Jan;65(1):1-16. doi: 10.1007/s12033-022-00543-8. Epub 2022 Aug 8.
10
Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens?
J Control Release. 2018 Jan 10;269:63-87. doi: 10.1016/j.jconrel.2017.11.001. Epub 2017 Nov 10.

引用本文的文献

1
Tools to study microbial iron homeostasis and oxidative stress: current techniques and methodological gaps.
Front Mol Biosci. 2025 Jul 30;12:1628725. doi: 10.3389/fmolb.2025.1628725. eCollection 2025.
2
Production and Antibacterial Activity of Atypical Siderophore from sp. QCS59 Recovered from .
Pharmaceuticals (Basel). 2024 Aug 26;17(9):1126. doi: 10.3390/ph17091126.
4
Biofilm Microenvironment Activated Antibiotic Adjuvant for Implant-Associated Infections by Systematic Iron Metabolism Interference.
Adv Sci (Weinh). 2024 May;11(17):e2400862. doi: 10.1002/advs.202400862. Epub 2024 Feb 26.
5
Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance.
Antibiotics (Basel). 2024 Jan 26;13(2):124. doi: 10.3390/antibiotics13020124.
6
Opportunities and challenges of microbial siderophores in the medical field.
Appl Microbiol Biotechnol. 2023 Nov;107(22):6751-6759. doi: 10.1007/s00253-023-12742-7. Epub 2023 Sep 27.
8
In Vitro Activity of Two Novel Antimicrobial Compounds on MDR-Resistant Clinical Isolates.
Antibiotics (Basel). 2023 Jul 31;12(8):1265. doi: 10.3390/antibiotics12081265.
10
Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages.
Infect Immun. 2023 Aug 16;91(8):e0007223. doi: 10.1128/iai.00072-23. Epub 2023 Jul 10.

本文引用的文献

1
Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa.
J Microbiol. 2018 Jul;56(7):449-457. doi: 10.1007/s12275-018-8114-3. Epub 2018 Jun 14.
2
Potential Treatment Options in a Post-antibiotic Era.
Adv Exp Med Biol. 2018;1052:51-61. doi: 10.1007/978-981-10-7572-8_5.
4
Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents.
Open Microbiol J. 2017 Apr 28;11:53-62. doi: 10.2174/1874285801711010053. eCollection 2017.
5
Acinetobacter baumannii Biofilm Formation in Human Serum and Disruption by Gallium.
Antimicrob Agents Chemother. 2016 Dec 27;61(1). doi: 10.1128/AAC.01563-16. Print 2017 Jan.
6
Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection.
Infect Immun. 2016 Jul 21;84(8):2324-2335. doi: 10.1128/IAI.00098-16. Print 2016 Aug.
10
Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions.
J Proteome Res. 2015 Sep 4;14(9):3804-22. doi: 10.1021/acs.jproteome.5b00148. Epub 2015 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验