Suppr超能文献

通过起始区域进行蛋白酶体对底物的选择。

Substrate selection by the proteasome through initiation regions.

机构信息

Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712.

出版信息

Protein Sci. 2019 Jul;28(7):1222-1232. doi: 10.1002/pro.3642. Epub 2019 May 23.

Abstract

Proteins in the cell have to be eliminated once their function is no longer desired or they become damaged. Most regulated protein degradation is achieved by a large enzymatic complex called the proteasome. Many proteasome substrates are targeted for degradation by the covalent attachment of ubiquitin molecules. Ubiquitinated proteins can be bound by the proteasome, but for proteolysis to occur the proteasome needs to find a disordered tail somewhere in the target at which it initiates degradation. The initiation step contributes to the specificity of proteasomal degradation. Here, we review how the proteasome selects initiation sites within its substrates and discuss how the initiation step affects physiological processes.

摘要

细胞中的蛋白质一旦其功能不再需要或受损,就必须被消除。大多数受调控的蛋白质降解是通过一种称为蛋白酶体的大型酶复合物来实现的。许多蛋白酶体底物通过泛素分子的共价连接被靶向降解。泛素化的蛋白质可以被蛋白酶体结合,但为了发生蛋白水解,蛋白酶体需要在靶标中找到某个无序的尾部,然后从该尾部开始降解。起始步骤有助于蛋白酶体降解的特异性。在这里,我们回顾了蛋白酶体如何在其底物中选择起始位点,并讨论了起始步骤如何影响生理过程。

相似文献

1
Substrate selection by the proteasome through initiation regions.
Protein Sci. 2019 Jul;28(7):1222-1232. doi: 10.1002/pro.3642. Epub 2019 May 23.
2
Structural and biochemical elements of efficiently degradable proteasome substrates.
J Biochem. 2022 Mar 3;171(3):261-268. doi: 10.1093/jb/mvab157.
4
Structural disorder and its role in proteasomal degradation.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2552-60. doi: 10.1016/j.febslet.2015.07.034. Epub 2015 Jul 29.
5
Ubiquitin recognition by the proteasome.
J Biochem. 2017 Feb 1;161(2):113-124. doi: 10.1093/jb/mvw091.
6
Recognition of Client Proteins by the Proteasome.
Annu Rev Biophys. 2017 May 22;46:149-173. doi: 10.1146/annurev-biophys-070816-033719. Epub 2017 Mar 9.
7
Regulation of Proteasomal Degradation by Modulating Proteasomal Initiation Regions.
ACS Chem Biol. 2015 Nov 20;10(11):2537-43. doi: 10.1021/acschembio.5b00554. Epub 2015 Aug 21.
8
The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome.
Commun Biol. 2019 Jan 21;2:29. doi: 10.1038/s42003-019-0283-z. eCollection 2019.
9
Paradigms of protein degradation by the proteasome.
Curr Opin Struct Biol. 2014 Feb;24:156-64. doi: 10.1016/j.sbi.2014.02.002. Epub 2014 Mar 14.
10
Substrate degradation by the proteasome: a single-molecule kinetic analysis.
Science. 2015 Apr 10;348(6231):1250834. doi: 10.1126/science.1250834.

引用本文的文献

1
How the double-ring ClpAP protease motor grips the substrate to unfold and degrade stable proteins.
J Biol Chem. 2024 Nov;300(11):107861. doi: 10.1016/j.jbc.2024.107861. Epub 2024 Oct 5.
2
Mechanisms and regulation of substrate degradation by the 26S proteasome.
Nat Rev Mol Cell Biol. 2025 Feb;26(2):104-122. doi: 10.1038/s41580-024-00778-0. Epub 2024 Oct 3.
3
Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions.
Molecules. 2023 Sep 21;28(18):6740. doi: 10.3390/molecules28186740.
4
The AAA+ protein Msp1 recognizes substrates by a hydrophobic mismatch.
bioRxiv. 2024 Sep 29:2023.07.11.548587. doi: 10.1101/2023.07.11.548587.
7
Lighting up Nobel Prize-winning studies with protein intrinsic disorder.
Cell Mol Life Sci. 2022 Jul 26;79(8):449. doi: 10.1007/s00018-022-04468-y.
8
Ribosome-associated quality-control mechanisms from bacteria to humans.
Mol Cell. 2022 Apr 21;82(8):1451-1466. doi: 10.1016/j.molcel.2022.03.038.
10
Design principles that protect the proteasome from self-destruction.
Protein Sci. 2022 Mar;31(3):556-567. doi: 10.1002/pro.4251. Epub 2021 Dec 16.

本文引用的文献

1
The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome.
Commun Biol. 2019 Jan 21;2:29. doi: 10.1038/s42003-019-0283-z. eCollection 2019.
2
Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome.
Nature. 2019 Jan;565(7737):49-55. doi: 10.1038/s41586-018-0736-4. Epub 2018 Nov 12.
3
Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation.
Science. 2018 Nov 30;362(6418). doi: 10.1126/science.aav0725. Epub 2018 Oct 11.
4
Regulation of proteasome assembly and activity in health and disease.
Nat Rev Mol Cell Biol. 2018 Nov;19(11):697-712. doi: 10.1038/s41580-018-0040-z.
5
Structure and Function of the 26S Proteasome.
Annu Rev Biochem. 2018 Jun 20;87:697-724. doi: 10.1146/annurev-biochem-062917-011931. Epub 2018 Apr 13.
6
In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment.
Cell. 2018 Feb 8;172(4):696-705.e12. doi: 10.1016/j.cell.2017.12.030. Epub 2018 Feb 1.
7
Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead.
Cell Chem Biol. 2018 Jan 18;25(1):78-87.e5. doi: 10.1016/j.chembiol.2017.09.010. Epub 2017 Nov 9.
8
A Chemoproteomic Approach to Query the Degradable Kinome Using a Multi-kinase Degrader.
Cell Chem Biol. 2018 Jan 18;25(1):88-99.e6. doi: 10.1016/j.chembiol.2017.10.005. Epub 2017 Nov 9.
9
Toward an understanding of the Cdc48/p97 ATPase.
F1000Res. 2017 Aug 3;6:1318. doi: 10.12688/f1000research.11683.1. eCollection 2017.
10
The Logic of the 26S Proteasome.
Cell. 2017 May 18;169(5):792-806. doi: 10.1016/j.cell.2017.04.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验