Suppr超能文献

减肥手术后预测严重并发症的机器学习算法比较研究

A Comparative Study of Machine Learning Algorithms in Predicting Severe Complications after Bariatric Surgery.

作者信息

Cao Yang, Fang Xin, Ottosson Johan, Näslund Erik, Stenberg Erik

机构信息

Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.

Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

出版信息

J Clin Med. 2019 May 12;8(5):668. doi: 10.3390/jcm8050668.

Abstract

BACKGROUND

Severe obesity is a global public health threat of growing proportions. Accurate models to predict severe postoperative complications could be of value in the preoperative assessment of potential candidates for bariatric surgery. So far, traditional statistical methods have failed to produce high accuracy. We aimed to find a useful machine learning (ML) algorithm to predict the risk for severe complication after bariatric surgery.

METHODS

We trained and compared 29 supervised ML algorithms using information from 37,811 patients that operated with a bariatric surgical procedure between 2010 and 2014 in Sweden. The algorithms were then tested on 6250 patients operated in 2015. We performed the synthetic minority oversampling technique tackling the issue that only 3% of patients experienced severe complications.

RESULTS

Most of the ML algorithms showed high accuracy (>90%) and specificity (>90%) in both the training and test data. However, none of the algorithms achieved an acceptable sensitivity in the test data. We also tried to tune the hyperparameters of the algorithms to maximize sensitivity, but did not yet identify one with a high enough sensitivity that can be used in clinical praxis in bariatric surgery. However, a minor, but perceptible, improvement in deep neural network (NN) ML was found.

CONCLUSION

In predicting the severe postoperative complication among the bariatric surgery patients, ensemble algorithms outperform base algorithms. When compared to other ML algorithms, deep NN has the potential to improve the accuracy and it deserves further investigation. The oversampling technique should be considered in the context of imbalanced data where the number of the interested outcome is relatively small.

摘要

背景

重度肥胖是一个日益严重的全球公共卫生威胁。准确预测术后严重并发症的模型对于肥胖症手术潜在候选者的术前评估可能具有重要价值。到目前为止,传统统计方法未能产生高准确率。我们旨在找到一种有用的机器学习(ML)算法来预测肥胖症手术后严重并发症的风险。

方法

我们使用2010年至2014年在瑞典接受肥胖症手术的37811名患者的信息,训练并比较了29种监督式ML算法。然后在2015年接受手术的6250名患者身上对这些算法进行测试。我们采用合成少数过采样技术来解决只有3%的患者发生严重并发症这一问题。

结果

大多数ML算法在训练数据和测试数据中均显示出高准确率(>90%)和高特异性(>90%)。然而,没有一种算法在测试数据中达到可接受的灵敏度。我们还尝试调整算法的超参数以最大化灵敏度,但尚未找到一种灵敏度足够高、可用于肥胖症手术临床实践的算法。不过,发现深度神经网络(NN)ML有轻微但可察觉的改进。

结论

在预测肥胖症手术患者术后严重并发症方面,集成算法优于基础算法。与其他ML算法相比,深度NN有提高准确率的潜力,值得进一步研究。在感兴趣结局数量相对较少的不平衡数据情况下,应考虑过采样技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1123/6571760/6b6b1deef468/jcm-08-00668-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验