Suppr超能文献

机器学习再入院风险建模:儿科案例研究。

Machine Learning Readmission Risk Modeling: A Pediatric Case Study.

机构信息

Research Center on Business Intelligence, University of Chile, Beauchef 851, Of. 502, Santiago, Chile.

Hospital Dr. Exequiel González Cortés, Gran Avenida 3300, San Miguel, Santiago, Chile.

出版信息

Biomed Res Int. 2019 Apr 15;2019:8532892. doi: 10.1155/2019/8532892. eCollection 2019.

Abstract

BACKGROUND

Hospital readmission prediction in pediatric hospitals has received little attention. Studies have focused on the readmission frequency analysis stratified by disease and demographic/geographic characteristics but there are no predictive modeling approaches, which may be useful to identify preventable readmissions that constitute a major portion of the cost attributed to readmissions.

OBJECTIVE

To assess the all-cause readmission predictive performance achieved by machine learning techniques in the emergency department of a pediatric hospital in Santiago, Chile.

MATERIALS

An all-cause admissions dataset has been collected along six consecutive years in a pediatric hospital in Santiago, Chile. The variables collected are the same used for the determination of the child's treatment administrative cost.

METHODS

Retrospective predictive analysis of 30-day readmission was formulated as a binary classification problem. We report classification results achieved with various model building approaches after data curation and preprocessing for correction of class imbalance. We compute repeated cross-validation (RCV) with decreasing number of folders to assess performance and sensitivity to effect of imbalance in the test set and training set size.

RESULTS

Increase in recall due to SMOTE class imbalance correction is large and statistically significant. The Naive Bayes (NB) approach achieves the best AUC (0.65); however the shallow multilayer perceptron has the best PPV and f-score (5.6 and 10.2, resp.). The NB and support vector machines (SVM) give comparable results if we consider AUC, PPV, and f-score ranking for all RCV experiments. High recall of deep multilayer perceptron is due to high false positive ratio. There is no detectable effect of the number of folds in the RCV on the predictive performance of the algorithms.

CONCLUSIONS

We recommend the use of Naive Bayes (NB) with Gaussian distribution model as the most robust modeling approach for pediatric readmission prediction, achieving the best results across all training dataset sizes. The results show that the approach could be applied to detect preventable readmissions.

摘要

背景

儿科医院的住院患者再入院预测尚未得到广泛关注。既往研究主要集中于按疾病和人口统计学/地理位置特征分层的再入院频率分析,但缺乏预测建模方法,而这些方法可能有助于识别可预防的再入院,这是导致再入院费用的主要部分。

目的

评估机器学习技术在智利圣地亚哥一家儿科医院急诊科进行全因再入院预测的性能。

材料

本研究收集了智利圣地亚哥一家儿科医院连续 6 年的全因入院数据集。所收集的变量与用于确定患儿治疗管理费用的变量相同。

方法

采用回顾性预测分析方法,将 30 天内再入院定义为二分类问题。我们报告了在数据整理和预处理以纠正类别不平衡后,使用各种模型构建方法获得的分类结果。我们通过重复交叉验证(RCV),使用逐渐减少的文件夹数来评估性能,并评估测试集和训练集大小对不平衡的影响。

结果

SMOTE 类别不平衡校正导致的召回率增加较大且具有统计学意义。朴素贝叶斯(NB)方法的 AUC(0.65)最高;然而,浅层多层感知机的 PPV 和 F1 评分最高(分别为 5.6 和 10.2)。如果考虑所有 RCV 实验的 AUC、PPV 和 F1 评分排序,NB 和支持向量机(SVM)的结果相当。深层多层感知机的高召回率归因于高假阳性率。RCV 中文件夹数量对算法的预测性能没有可检测的影响。

结论

我们建议使用带有高斯分布模型的朴素贝叶斯(NB)作为最稳健的建模方法进行儿科再入院预测,在所有训练数据集大小下均能获得最佳结果。结果表明,该方法可用于检测可预防的再入院。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b6e/6500604/962a55deff67/BMRI2019-8532892.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验