Suppr超能文献

Cwp22,一种新型的肽聚糖交联酶,在艰难梭菌中发挥多种作用。

Cwp22, a novel peptidoglycan cross-linking enzyme, plays pleiotropic roles in Clostridioides difficile.

机构信息

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.

Department of Microbiology and Immunology, and Center for Computational Medicine and Bioinformatics, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.

出版信息

Environ Microbiol. 2019 Aug;21(8):3076-3090. doi: 10.1111/1462-2920.14706. Epub 2019 Jun 28.

Abstract

Clostridioides difficile is a Gram-positive, spore-forming, toxin-producing anaerobe pathogen, and can induce nosocomial antibiotic-associated intestinal disease. While production of toxin A (TcdA) and toxin B (TcdB) contribute to the main pathogenesis of C. difficile, adhesion and colonization of C. difficile in the host gut are prerequisites for disease onset. Previous cell wall proteins (CWPs) were identified that were implicated in C. difficile adhesion and colonization. In this study, we predicted and characterized Cwp22 (CDR20291_2601) from C. difficile R20291 to be involved in bacterial adhesion based on the Vaxign reverse vaccinology tool. The ClosTron-generated cwp22 mutant showed decreased TcdA and TcdB production during early growth, and increased cell permeability and autolysis. Importantly, the cwp22 mutation impaired cellular adherence in vitro and decreased cytotoxicity and fitness over the parent strain in a mouse infection model. Furthermore, lactate dehydrogenase cytotoxicity assay, live-dead cell staining and transmission electron microscopy confirmed the decreased cell viability of the cwp22 mutant. Thus, Cwp22 is involved in cell wall integrity and cell viability, which could affect most phenotypes of R20291. Our data suggest that Cwp22 is an attractive target for C. difficile infection therapeutics and prophylactics.

摘要

艰难梭菌是一种革兰氏阳性、产芽孢、产毒的厌氧菌病原体,可引起医院获得性抗生素相关性肠道疾病。虽然毒素 A(TcdA)和毒素 B(TcdB)的产生有助于艰难梭菌的主要发病机制,但艰难梭菌在宿主肠道中的粘附和定植是疾病发生的前提。先前已经鉴定出一些与艰难梭菌粘附和定植有关的细胞壁蛋白(CWPs)。在这项研究中,我们基于 Vaxign 反向疫苗学工具预测并鉴定了艰难梭菌 R20291 中的 Cwp22(CDR20291_2601),认为其参与细菌粘附。ClosTron 生成的 cwp22 突变体在早期生长过程中 TcdA 和 TcdB 的产生减少,细胞通透性和自溶增加。重要的是,cwp22 突变在体外降低了细胞粘附性,并在小鼠感染模型中降低了细胞毒性和对亲本菌株的适应性。此外,乳酸脱氢酶细胞毒性测定、活/死细胞染色和透射电子显微镜证实了 cwp22 突变体的细胞活力降低。因此,Cwp22 参与细胞壁完整性和细胞活力,这可能会影响 R20291 的大多数表型。我们的数据表明,Cwp22 是艰难梭菌感染治疗和预防的有吸引力的靶点。

相似文献

1
Cwp22, a novel peptidoglycan cross-linking enzyme, plays pleiotropic roles in Clostridioides difficile.
Environ Microbiol. 2019 Aug;21(8):3076-3090. doi: 10.1111/1462-2920.14706. Epub 2019 Jun 28.
2
Cwl0971, a novel peptidoglycan hydrolase, plays pleiotropic roles in Clostridioides difficile R20291.
Environ Microbiol. 2021 Sep;23(9):5222-5238. doi: 10.1111/1462-2920.15529. Epub 2021 Apr 24.
4
Characterization of Flagellum and Toxin Phase Variation in Clostridioides difficile Ribotype 012 Isolates.
J Bacteriol. 2018 Jun 25;200(14). doi: 10.1128/JB.00056-18. Print 2018 Jul 15.
6
The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in .
Front Cell Infect Microbiol. 2019 Oct 17;9:356. doi: 10.3389/fcimb.2019.00356. eCollection 2019.
7
Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.
Microb Pathog. 2012 Jan;52(1):92-100. doi: 10.1016/j.micpath.2011.10.009. Epub 2011 Nov 17.
8
Observations on the Role of TcdE Isoforms in Clostridium difficile Toxin Secretion.
J Bacteriol. 2015 Aug 1;197(15):2600-9. doi: 10.1128/JB.00224-15. Epub 2015 May 26.
9
Association between Clostridioides difficile ribotypes, restriction endonuclease analysis types, and toxin gene expression.
Anaerobe. 2018 Dec;54:140-143. doi: 10.1016/j.anaerobe.2018.09.002. Epub 2018 Sep 7.
10
Role of fibronectin-binding protein A in Clostridium difficile intestinal colonization.
J Med Microbiol. 2011 Aug;60(Pt 8):1155-1161. doi: 10.1099/jmm.0.029553-0. Epub 2011 Feb 24.

引用本文的文献

1
Microbial Biosensor for Sensing and Treatment of Intestinal Inflammation.
Adv Sci (Weinh). 2025 Jul;12(27):e2504364. doi: 10.1002/advs.202504364. Epub 2025 May 5.
2
Control of virulence and physiology by the flagellin homeostasis checkpoint FliC-FliW-CsrA in the absence of motility.
mBio. 2025 Mar 12;16(3):e0380124. doi: 10.1128/mbio.03801-24. Epub 2025 Jan 30.
3
Unexpected vulnerability of to polymyxin B under anaerobic condition.
Gut Microbes. 2024 Jan-Dec;16(1):2438465. doi: 10.1080/19490976.2024.2438465. Epub 2024 Dec 11.
4
infection: an update.
Infez Med. 2024 Sep 1;32(3):280-291. doi: 10.53854/liim-3203-3. eCollection 2024.
5
A Clostridioides difficile endolysin modulates toxin secretion without cell lysis.
Commun Biol. 2024 Aug 23;7(1):1044. doi: 10.1038/s42003-024-06730-4.
6
infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options.
Clin Microbiol Rev. 2024 Jun 13;37(2):e0013523. doi: 10.1128/cmr.00135-23. Epub 2024 Feb 29.
7
Antimicrobial Guanidinylate Polycarbonates Show Oral In Vivo Efficacy Against Clostridioides Difficile.
Adv Healthc Mater. 2024 Jun;13(14):e2303295. doi: 10.1002/adhm.202303295. Epub 2024 Feb 22.
8
Regulatory Role of Anti-Sigma Factor RsbW in Clostridioides difficile Stress Response, Persistence, and Infection.
J Bacteriol. 2023 May 25;205(5):e0046622. doi: 10.1128/jb.00466-22. Epub 2023 Apr 26.
9
infection: traversing host-pathogen interactions in the gut.
Microbiology (Reading). 2023 Feb;169(2). doi: 10.1099/mic.0.001306.
10
Non-Toxin-Based Vaccination Approaches.
Pathogens. 2023 Feb 2;12(2):235. doi: 10.3390/pathogens12020235.

本文引用的文献

1
Notification of changes in taxonomic opinion previously published outside the IJSEM.
Int J Syst Evol Microbiol. 2018 Jul;68(7):2137-2138. doi: 10.1099/ijsem.0.002830.
2
Importance of flagella in acute and chronic Pseudomonas aeruginosa infections.
Environ Microbiol. 2019 Mar;21(3):883-897. doi: 10.1111/1462-2920.14468. Epub 2018 Dec 3.
5
Biology: Sporulation, Germination, and Corresponding Therapies for Infection.
Front Cell Infect Microbiol. 2018 Feb 8;8:29. doi: 10.3389/fcimb.2018.00029. eCollection 2018.
6
The structure of the S-layer of Clostridium difficile.
J Cell Commun Signal. 2018 Mar;12(1):319-331. doi: 10.1007/s12079-017-0429-z. Epub 2017 Nov 23.
7
Identification of New Features from Known Bacterial Protective Vaccine Antigens Enhances Rational Vaccine Design.
Front Immunol. 2017 Oct 26;8:1382. doi: 10.3389/fimmu.2017.01382. eCollection 2017.
8
Peptidoglycan Cross-Linking Activity of l,d-Transpeptidases from Clostridium difficile and Inactivation of These Enzymes by β-Lactams.
Antimicrob Agents Chemother. 2017 Dec 21;62(1). doi: 10.1128/AAC.01607-17. Print 2018 Jan.
9
New class of precision antimicrobials redefines role of S-layer in virulence and viability.
Sci Transl Med. 2017 Sep 6;9(406). doi: 10.1126/scitranslmed.aah6813.
10
Cwp2 from Clostridium difficile exhibits an extended three domain fold and cell adhesion in vitro.
FEBS J. 2017 Sep;284(17):2886-2898. doi: 10.1111/febs.14157. Epub 2017 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验