Suppr超能文献

IL-22 及其受体在人类和实验性 COPD 中增加,并有助于发病机制。

IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis.

机构信息

Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia.

Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy.

出版信息

Eur Respir J. 2019 Jul 18;54(1). doi: 10.1183/13993003.00174-2018. Print 2019 Jul.

Abstract

Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death globally. The lack of effective treatments results from an incomplete understanding of the underlying mechanisms driving COPD pathogenesis.Interleukin (IL)-22 has been implicated in airway inflammation and is increased in COPD patients. However, its roles in the pathogenesis of COPD is poorly understood. Here, we investigated the role of IL-22 in human COPD and in cigarette smoke (CS)-induced experimental COPD.IL-22 and IL-22 receptor mRNA expression and protein levels were increased in COPD patients compared to healthy smoking or non-smoking controls. IL-22 and IL-22 receptor levels were increased in the lungs of mice with experimental COPD compared to controls and the cellular source of IL-22 included CD4 T-helper cells, γδ T-cells, natural killer T-cells and group 3 innate lymphoid cells. CS-induced pulmonary neutrophils were reduced in IL-22-deficient ( ) mice. CS-induced airway remodelling and emphysema-like alveolar enlargement did not occur in mice. mice had improved lung function in terms of airway resistance, total lung capacity, inspiratory capacity, forced vital capacity and compliance.These data highlight important roles for IL-22 and its receptors in human COPD and CS-induced experimental COPD.

摘要

慢性阻塞性肺疾病(COPD)是全球发病率和死亡率的第三大原因。缺乏有效的治疗方法是由于对导致 COPD 发病机制的潜在机制缺乏了解。白细胞介素(IL)-22 已被牵涉到气道炎症中,并且在 COPD 患者中增加。然而,其在 COPD 发病机制中的作用知之甚少。在这里,我们研究了 IL-22 在人类 COPD 和香烟烟雾(CS)诱导的实验性 COPD 中的作用。与健康吸烟或不吸烟的对照组相比,COPD 患者的 IL-22 和 IL-22 受体 mRNA 表达和蛋白水平增加。与对照组相比,实验性 COPD 小鼠的肺部 IL-22 和 IL-22 受体水平增加,IL-22 的细胞来源包括 CD4 T 辅助细胞、γδ T 细胞、自然杀伤 T 细胞和第 3 组固有淋巴细胞。IL-22 缺陷()小鼠中的 CS 诱导的肺中性粒细胞减少。CS 诱导的气道重塑和肺气肿样肺泡扩大不会发生在 小鼠中。 小鼠在气道阻力、肺活量、吸气量、用力肺活量和顺应性方面的肺功能得到改善。这些数据突出了 IL-22 及其受体在人类 COPD 和 CS 诱导的实验性 COPD 中的重要作用。

相似文献

1
IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis.
Eur Respir J. 2019 Jul 18;54(1). doi: 10.1183/13993003.00174-2018. Print 2019 Jul.
2
Toll-like receptor 2 and 4 have opposing roles in the pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease.
Am J Physiol Lung Cell Mol Physiol. 2018 Feb 1;314(2):L298-L317. doi: 10.1152/ajplung.00154.2017. Epub 2017 Oct 12.
3
Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease.
J Leukoc Biol. 2019 Jan;105(1):143-150. doi: 10.1002/JLB.3AB0518-178R. Epub 2018 Sep 27.
4
Infiltration of IL-17-Producing T Cells and Treg Cells in a Mouse Model of Smoke-Induced Emphysema.
Inflammation. 2016 Aug;39(4):1334-44. doi: 10.1007/s10753-016-0365-8.
5
MTOR Suppresses Cigarette Smoke-Induced Epithelial Cell Death and Airway Inflammation in Chronic Obstructive Pulmonary Disease.
J Immunol. 2018 Apr 15;200(8):2571-2580. doi: 10.4049/jimmunol.1701681. Epub 2018 Mar 5.
6
Protective role for club cell secretory protein-16 (CC16) in the development of COPD.
Eur Respir J. 2015 Jun;45(6):1544-56. doi: 10.1183/09031936.00134214. Epub 2015 Feb 19.
7
Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease.
Am J Respir Crit Care Med. 2021 Sep 15;204(6):667-681. doi: 10.1164/rccm.202009-3442OC.
8
Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis.
Am J Physiol Cell Physiol. 2018 Jan 1;314(1):C73-C87. doi: 10.1152/ajpcell.00110.2016. Epub 2016 Jul 13.
9
A Regulatory Role of Chemokine Receptor CXCR3 in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Emphysema.
Inflammation. 2021 Jun;44(3):985-998. doi: 10.1007/s10753-020-01393-9. Epub 2021 Jan 7.

引用本文的文献

1
Assessment of Small Airways Function in Eosinophilic Preserved Ratio Impaired Spirometry.
Pulm Ther. 2025 Sep;11(3):461-473. doi: 10.1007/s41030-025-00309-y. Epub 2025 Sep 8.
2
CD4T and CD8T cells profile in lung inflammation and fibrosis: targets and potential therapeutic drugs.
Front Immunol. 2025 May 9;16:1562892. doi: 10.3389/fimmu.2025.1562892. eCollection 2025.
4
Baicalin restores innate lymphoid immune imbalance during exacerbation of COPD.
Immunol Res. 2025 Apr 16;73(1):71. doi: 10.1007/s12026-025-09629-2.
5
Vitronectin regulates lung tissue remodeling and emphysema in chronic obstructive pulmonary disease.
Mol Ther. 2025 Mar 5;33(3):917-932. doi: 10.1016/j.ymthe.2025.01.032. Epub 2025 Jan 21.
6
Knowledge mapping and research trends of IL-22 from 2014 to 2023: A bibliometric analysis.
Hum Vaccin Immunother. 2024 Dec 31;20(1):2426321. doi: 10.1080/21645515.2024.2426321. Epub 2024 Nov 14.
7
I don't know about you, but I'm feeling IL-22.
Cytokine Growth Factor Rev. 2024 Dec;80:1-11. doi: 10.1016/j.cytogfr.2024.11.001. Epub 2024 Nov 8.
10
IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer.
Heliyon. 2024 Aug 10;10(17):e35901. doi: 10.1016/j.heliyon.2024.e35901. eCollection 2024 Sep 15.

本文引用的文献

1
Functional effects of the microbiota in chronic respiratory disease.
Lancet Respir Med. 2019 Oct;7(10):907-920. doi: 10.1016/S2213-2600(18)30510-1. Epub 2019 Apr 8.
3
4
Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations.
Eur Respir J. 2017 Oct 12;50(4). doi: 10.1183/13993003.02434-2016. Print 2017 Oct.
5
Toll-like receptor 2 and 4 have opposing roles in the pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease.
Am J Physiol Lung Cell Mol Physiol. 2018 Feb 1;314(2):L298-L317. doi: 10.1152/ajplung.00154.2017. Epub 2017 Oct 12.
7
Targeting PP2A and proteasome activity ameliorates features of allergic airway disease in mice.
Allergy. 2017 Dec;72(12):1891-1903. doi: 10.1111/all.13212. Epub 2017 Jun 21.
8
Microbiome effects on immunity, health and disease in the lung.
Clin Transl Immunology. 2017 Mar 10;6(3):e133. doi: 10.1038/cti.2017.6. eCollection 2017 Mar.
10
Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma.
Am J Respir Crit Care Med. 2017 Aug 1;196(3):283-297. doi: 10.1164/rccm.201609-1830OC.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验