Suppr超能文献

基于相同、残差和循环学习集成(GAN-CIRCLE)约束的 CT 超分辨率 GAN。

CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE).

出版信息

IEEE Trans Med Imaging. 2020 Jan;39(1):188-203. doi: 10.1109/TMI.2019.2922960. Epub 2019 Jun 14.

Abstract

In this paper, we present a semi-supervised deep learning approach to accurately recover high-resolution (HR) CT images from low-resolution (LR) counterparts. Specifically, with the generative adversarial network (GAN) as the building block, we enforce the cycle-consistency in terms of the Wasserstein distance to establish a nonlinear end-to-end mapping from noisy LR input images to denoised and deblurred HR outputs. We also include the joint constraints in the loss function to facilitate structural preservation. In this process, we incorporate deep convolutional neural network (CNN), residual learning, and network in network techniques for feature extraction and restoration. In contrast to the current trend of increasing network depth and complexity to boost the imaging performance, we apply a parallel 1×1 CNN to compress the output of the hidden layer and optimize the number of layers and the number of filters for each convolutional layer. The quantitative and qualitative evaluative results demonstrate that our proposed model is accurate, efficient and robust for super-resolution (SR) image restoration from noisy LR input images. In particular, we validate our composite SR networks on three large-scale CT datasets, and obtain promising results as compared to the other state-of-the-art methods.

摘要

在本文中,我们提出了一种半监督的深度学习方法,以从低分辨率 (LR) 对应物准确恢复高分辨率 (HR) CT 图像。具体来说,我们以生成对抗网络 (GAN) 为构建块,根据 Wasserstein 距离强制执行循环一致性,以建立从噪声 LR 输入图像到去噪和去模糊 HR 输出的非线性端到端映射。我们还在损失函数中包含联合约束,以促进结构保持。在这个过程中,我们结合了深度卷积神经网络 (CNN)、残差学习和网络内网络技术进行特征提取和恢复。与当前增加网络深度和复杂性以提高成像性能的趋势相反,我们应用并行 1×1 CNN 来压缩隐藏层的输出,并优化每个卷积层的层数和滤波器数。定量和定性评估结果表明,我们提出的模型对于从噪声 LR 输入图像进行超分辨率 (SR) 图像恢复是准确、高效和鲁棒的。特别是,我们在三个大规模 CT 数据集上验证了我们的复合 SR 网络,并与其他最先进的方法相比获得了有希望的结果。

相似文献

1
CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE).
IEEE Trans Med Imaging. 2020 Jan;39(1):188-203. doi: 10.1109/TMI.2019.2922960. Epub 2019 Jun 14.
2
Texture transformer super-resolution for low-dose computed tomography.
Biomed Phys Eng Express. 2022 Nov 4;8(6). doi: 10.1088/2057-1976/ac9da7.
3
CT image super-resolution under the guidance of deep gradient information.
J Xray Sci Technol. 2025 Jan;33(1):58-71. doi: 10.1177/08953996241289225. Epub 2024 Dec 15.
5
Deep learning-based harmonization of trabecular bone microstructures between high- and low-resolution CT imaging.
Med Phys. 2024 Jun;51(6):4258-4270. doi: 10.1002/mp.17003. Epub 2024 Feb 28.
6
Study of low-dose PET image recovery using supervised learning with CycleGAN.
PLoS One. 2020 Sep 4;15(9):e0238455. doi: 10.1371/journal.pone.0238455. eCollection 2020.
8
Generative adversarial network-based sinogram super-resolution for computed tomography imaging.
Phys Med Biol. 2020 Dec 18;65(23):235006. doi: 10.1088/1361-6560/abc12f.
9
SGSR: style-subnets-assisted generative latent bank for large-factor super-resolution with registered medical image dataset.
Int J Comput Assist Radiol Surg. 2024 Mar;19(3):493-506. doi: 10.1007/s11548-023-03037-3. Epub 2023 Dec 21.

引用本文的文献

2
Super-Resolution MR Spectroscopic Imaging via Diffusion Models for Tumor Metabolism Mapping.
J Imaging Inform Med. 2025 Sep 2. doi: 10.1007/s10278-025-01652-x.
3
Efficient sparse-view medical image classification for low radiation and rapid COVID-19 diagnosis.
Biomed Eng Lett. 2025 May 22;15(4):785-795. doi: 10.1007/s13534-025-00478-4. eCollection 2025 Jul.
6
Continuous representation-based reconstruction for computed tomography.
Med Phys. 2025 Jul;52(7):e17849. doi: 10.1002/mp.17849. Epub 2025 May 2.
7
[A low-dose CT image restoration method based on central guidance and alternating optimization].
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Apr 20;45(4):844-852. doi: 10.12122/j.issn.1673-4254.2025.04.20.
9
Can super resolution via deep learning improve classification accuracy in dental radiography?
Dentomaxillofac Radiol. 2025 Sep 1;54(6):473-487. doi: 10.1093/dmfr/twaf029.
10
Noise Controlled CT Super-Resolution with Conditional Diffusion Model.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2024 Aug;2024:98-101.

本文引用的文献

1
Structurally-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising.
IEEE Access. 2018;6:41839-41855. doi: 10.1109/ACCESS.2018.2858196. Epub 2018 Jul 20.
2
Cycle-consistent adversarial denoising network for multiphase coronary CT angiography.
Med Phys. 2019 Feb;46(2):550-562. doi: 10.1002/mp.13284. Epub 2018 Dec 26.
4
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
5
Medical Image Synthesis with Deep Convolutional Adversarial Networks.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
6
Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers.
Biomed Opt Express. 2018 Jun 11;9(7):3049-3066. doi: 10.1364/BOE.9.003049. eCollection 2018 Jul 1.
7
Computed tomography super-resolution using deep convolutional neural network.
Phys Med Biol. 2018 Jul 16;63(14):145011. doi: 10.1088/1361-6560/aacdd4.
8
3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network.
IEEE Trans Med Imaging. 2018 Jun;37(6):1522-1534. doi: 10.1109/TMI.2018.2832217.
9
Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.
IEEE Trans Med Imaging. 2018 Jun;37(6):1348-1357. doi: 10.1109/TMI.2018.2827462.
10
Learned Primal-Dual Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1322-1332. doi: 10.1109/TMI.2018.2799231.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验