IEEE Trans Med Imaging. 2020 Jan;39(1):188-203. doi: 10.1109/TMI.2019.2922960. Epub 2019 Jun 14.
In this paper, we present a semi-supervised deep learning approach to accurately recover high-resolution (HR) CT images from low-resolution (LR) counterparts. Specifically, with the generative adversarial network (GAN) as the building block, we enforce the cycle-consistency in terms of the Wasserstein distance to establish a nonlinear end-to-end mapping from noisy LR input images to denoised and deblurred HR outputs. We also include the joint constraints in the loss function to facilitate structural preservation. In this process, we incorporate deep convolutional neural network (CNN), residual learning, and network in network techniques for feature extraction and restoration. In contrast to the current trend of increasing network depth and complexity to boost the imaging performance, we apply a parallel 1×1 CNN to compress the output of the hidden layer and optimize the number of layers and the number of filters for each convolutional layer. The quantitative and qualitative evaluative results demonstrate that our proposed model is accurate, efficient and robust for super-resolution (SR) image restoration from noisy LR input images. In particular, we validate our composite SR networks on three large-scale CT datasets, and obtain promising results as compared to the other state-of-the-art methods.
在本文中,我们提出了一种半监督的深度学习方法,以从低分辨率 (LR) 对应物准确恢复高分辨率 (HR) CT 图像。具体来说,我们以生成对抗网络 (GAN) 为构建块,根据 Wasserstein 距离强制执行循环一致性,以建立从噪声 LR 输入图像到去噪和去模糊 HR 输出的非线性端到端映射。我们还在损失函数中包含联合约束,以促进结构保持。在这个过程中,我们结合了深度卷积神经网络 (CNN)、残差学习和网络内网络技术进行特征提取和恢复。与当前增加网络深度和复杂性以提高成像性能的趋势相反,我们应用并行 1×1 CNN 来压缩隐藏层的输出,并优化每个卷积层的层数和滤波器数。定量和定性评估结果表明,我们提出的模型对于从噪声 LR 输入图像进行超分辨率 (SR) 图像恢复是准确、高效和鲁棒的。特别是,我们在三个大规模 CT 数据集上验证了我们的复合 SR 网络,并与其他最先进的方法相比获得了有希望的结果。