Suppr超能文献

使用 DeepLabCut 进行跨物种和行为的无标记 3D 姿态估计。

Using DeepLabCut for 3D markerless pose estimation across species and behaviors.

机构信息

Rowland Institute at Harvard, Harvard University, Cambridge, MA, USA.

Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA.

出版信息

Nat Protoc. 2019 Jul;14(7):2152-2176. doi: 10.1038/s41596-019-0176-0. Epub 2019 Jun 21.

Abstract

Noninvasive behavioral tracking of animals during experiments is critical to many scientific pursuits. Extracting the poses of animals without using markers is often essential to measuring behavioral effects in biomechanics, genetics, ethology, and neuroscience. However, extracting detailed poses without markers in dynamically changing backgrounds has been challenging. We recently introduced an open-source toolbox called DeepLabCut that builds on a state-of-the-art human pose-estimation algorithm to allow a user to train a deep neural network with limited training data to precisely track user-defined features that match human labeling accuracy. Here, we provide an updated toolbox, developed as a Python package, that includes new features such as graphical user interfaces (GUIs), performance improvements, and active-learning-based network refinement. We provide a step-by-step procedure for using DeepLabCut that guides the user in creating a tailored, reusable analysis pipeline with a graphical processing unit (GPU) in 1-12 h (depending on frame size). Additionally, we provide Docker environments and Jupyter Notebooks that can be run on cloud resources such as Google Colaboratory.

摘要

在实验中对动物进行非侵入式行为跟踪对于许多科学研究至关重要。在生物力学、遗传学、行为学和神经科学中,不使用标记提取动物的姿势通常是测量行为影响的关键。然而,在动态变化的背景下,不使用标记提取详细的姿势一直是一个挑战。我们最近引入了一个名为 DeepLabCut 的开源工具箱,它基于最先进的人体姿势估计算法,允许用户使用有限的训练数据训练深度神经网络,以精确跟踪与人类标记准确性相匹配的用户定义特征。在这里,我们提供了一个更新的工具箱,它是一个 Python 包,其中包括新的功能,如图形用户界面 (GUI)、性能改进和基于主动学习的网络细化。我们提供了一个使用 DeepLabCut 的分步过程,指导用户在 1-12 小时内(具体取决于帧大小)使用图形处理单元 (GPU) 创建一个定制的、可重复使用的分析管道。此外,我们提供了可以在 Google Colaboratory 等云资源上运行的 Docker 环境和 Jupyter Notebook。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验