Suppr超能文献

双反应性-环辛醇探针用于活细胞中的亚磺酰化反应,通过生物正交淬灭实现时间控制。

Dual-Reactivity -Cyclooctenol Probes for Sulfenylation in Live Cells Enable Temporal Control via Bioorthogonal Quenching.

机构信息

Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.

Pfizer Worldwide Research and Development , Cambridge , Massachusetts 02139 , United States.

出版信息

J Am Chem Soc. 2019 Jul 17;141(28):10932-10937. doi: 10.1021/jacs.9b01164. Epub 2019 Jul 9.

Abstract

Sulfenylation (RSH → RSOH) is a post-translational protein modification associated with cellular mechanisms for signal transduction and the regulation of reactive oxygen species. Protein sulfenic acids are challenging to identify and study due to their electrophilic and transient nature. Described here are sulfenic acid modifying -cycloocten-5-ol (SAM-TCO) probes for labeling sulfenic acid functionality in live cells. These probes enable a new mode of capturing sulfenic acids via transannular thioetherification, whereas "ordinary" cyclooctenes react only slowly with sulfenic acids. SAM-TCOs combine with sulfenic acid forms of a model peptide and proteins to form stable adducts. Analogously, SAM-TCO with the selenenic acid form of a model protein leads to a selenoetherification product. Control experiments illustrate the need for the transannulation process coupled with the activated -cycloalkene functionality. Bioorthogonal quenching of excess unreacted SAM-TCOs with tetrazines in live cells provides both temporal control and a means of preventing artifacts caused by cellular-lysis. A SAM-TCO biotin conjugate was used to label protein sulfenic acids in live cells, and subsequent quenching by tetrazine prevented further labeling even under harshly oxidizing conditions. A cell-based proteomic study validates the ability of SAM-TCO probes to identify and quantify known sulfenic acid redox proteins as well as targets not captured by dimedone-based probes.

摘要

磺酰化作用(RSH → RSOH)是一种与细胞信号转导和活性氧调节相关的蛋白质翻译后修饰。由于其亲电性和瞬态性质,蛋白质亚磺酸很难被识别和研究。本文描述了用于标记活细胞中亚磺酸功能的磺酰化 -环辛烯-5-醇(SAM-TCO)探针。这些探针通过环硫醚化反应提供了一种新的捕获亚磺酸的方式,而“普通”环辛烯与亚磺酸的反应速度很慢。SAM-TCO 与模型肽和蛋白质的亚磺酸形式结合形成稳定的加合物。类似地,SAM-TCO 与模型蛋白质的硒酸形式反应生成硒醚化产物。对照实验说明了需要进行反环化过程,同时需要激活 -环烯烃官能团。在活细胞中,用四嗪对过量未反应的 SAM-TCO 进行生物正交淬灭,既提供了时间控制,又防止了由细胞裂解引起的假象。SAM-TCO 生物素缀合物被用于标记活细胞中的蛋白质亚磺酸,随后用四嗪进行淬灭,即使在强烈氧化条件下,也可以防止进一步标记。基于细胞的蛋白质组学研究验证了 SAM-TCO 探针识别和定量已知亚磺酸氧化还原蛋白质以及二甲酮基探针未捕获的靶标的能力。

相似文献

1
Dual-Reactivity -Cyclooctenol Probes for Sulfenylation in Live Cells Enable Temporal Control via Bioorthogonal Quenching.
J Am Chem Soc. 2019 Jul 17;141(28):10932-10937. doi: 10.1021/jacs.9b01164. Epub 2019 Jul 9.
2
Synthesis of chemical probes to map sulfenic acid modifications on proteins.
Bioconjug Chem. 2005 Nov-Dec;16(6):1624-8. doi: 10.1021/bc050257s.
3
Strained cycloalkynes as new protein sulfenic acid traps.
J Am Chem Soc. 2014 Apr 30;136(17):6167-70. doi: 10.1021/ja500364r. Epub 2014 Apr 16.
4
Triphenylphosphonium-Derived Protein Sulfenic Acid Trapping Agents: Synthesis, Reactivity, and Effect on Mitochondrial Function.
Chem Res Toxicol. 2019 Mar 18;32(3):526-534. doi: 10.1021/acs.chemrestox.8b00385. Epub 2019 Mar 4.
5
Widespread sulfenic acid formation in tissues in response to hydrogen peroxide.
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17982-7. doi: 10.1073/pnas.0404762101. Epub 2004 Dec 16.
9
Norbornene Probes for the Detection of Cysteine Sulfenic Acid in Cells.
ACS Chem Biol. 2019 Apr 19;14(4):594-598. doi: 10.1021/acschembio.8b01104. Epub 2019 Mar 26.
10
Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue.
Mol Cell Proteomics. 2007 Sep;6(9):1473-84. doi: 10.1074/mcp.M700065-MCP200. Epub 2007 Jun 14.

引用本文的文献

1
Dynamically Generated Carbenium Species via Photoisomerization of Cyclic Alkenes: Mild Friedel-Crafts Alkylation.
J Org Chem. 2025 Mar 14;90(10):3762-3768. doi: 10.1021/acs.joc.5c00061. Epub 2025 Mar 5.
5
Flow Photochemical Syntheses of -Cyclooctenes and -Cycloheptenes Driven by Metal Complexation.
Isr J Chem. 2020 Mar;60(3-4):207-218. doi: 10.1002/ijch.201900085. Epub 2019 Oct 10.
6
Contemporary proteomic strategies for cysteine redoxome profiling.
Plant Physiol. 2021 May 27;186(1):110-124. doi: 10.1093/plphys/kiaa074.
7
General, Divergent Platform for Diastereoselective Synthesis of trans-Cyclooctenes with High Reactivity and Favorable Physiochemical Properties*.
Angew Chem Int Ed Engl. 2021 Jun 25;60(27):14975-14980. doi: 10.1002/anie.202101483. Epub 2021 May 26.
8
Oxidation-Induced "One-Pot" Click Chemistry.
Chem Rev. 2021 Jun 23;121(12):7032-7058. doi: 10.1021/acs.chemrev.0c01180. Epub 2021 Mar 4.
9
Immunological Techniques to Assess Protein Thiol Redox State: Opportunities, Challenges and Solutions.
Antioxidants (Basel). 2020 Apr 15;9(4):315. doi: 10.3390/antiox9040315.
10
Introduction to approaches and tools for the evaluation of protein cysteine oxidation.
Essays Biochem. 2020 Feb 17;64(1):1-17. doi: 10.1042/EBC20190050.

本文引用的文献

1
Chemical proteomics reveals new targets of cysteine sulfinic acid reductase.
Nat Chem Biol. 2018 Nov;14(11):995-1004. doi: 10.1038/s41589-018-0116-2. Epub 2018 Sep 3.
2
Redox Signaling by Reactive Electrophiles and Oxidants.
Chem Rev. 2018 Sep 26;118(18):8798-8888. doi: 10.1021/acs.chemrev.7b00698. Epub 2018 Aug 27.
3
Mitochondria-targeted Probes for Imaging Protein Sulfenylation.
Sci Rep. 2018 Apr 27;8(1):6635. doi: 10.1038/s41598-018-24493-x.
4
Chemical Probes for Redox Signaling and Oxidative Stress.
Antioxid Redox Signal. 2019 Apr 1;30(10):1369-1386. doi: 10.1089/ars.2017.7408. Epub 2017 Dec 22.
5
ROS in Cancer: The Burning Question.
Trends Mol Med. 2017 May;23(5):411-429. doi: 10.1016/j.molmed.2017.03.004. Epub 2017 Apr 17.
6
Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
J Am Chem Soc. 2017 Apr 19;139(15):5588-5595. doi: 10.1021/jacs.7b01791. Epub 2017 Apr 10.
7
The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.
Arch Biochem Biophys. 2017 Feb 15;616:40-46. doi: 10.1016/j.abb.2017.01.008. Epub 2017 Jan 23.
8
A Cell-Permeable Biscyclooctyne As a Novel Probe for the Identification of Protein Sulfenic Acids.
ACS Chem Biol. 2016 Dec 16;11(12):3300-3304. doi: 10.1021/acschembio.6b00742. Epub 2016 Nov 11.
9
Reactivity, Selectivity, and Stability in Sulfenic Acid Detection: A Comparative Study of Nucleophilic and Electrophilic Probes.
Bioconjug Chem. 2016 May 18;27(5):1411-8. doi: 10.1021/acs.bioconjchem.6b00181. Epub 2016 May 9.
10
Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
Antioxid Redox Signal. 2017 Mar 1;26(7):329-344. doi: 10.1089/ars.2016.6720. Epub 2016 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验