Suppr超能文献

硝酸银和银纳米颗粒对珍珠粟(L.)幼苗的生理生化响应。

Physiological and Biochemical Responses of Pearl Millet ( L.) Seedlings Exposed to Silver Nitrate (AgNO) and Silver Nanoparticles (AgNPs).

机构信息

Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China.

College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.

出版信息

Int J Environ Res Public Health. 2019 Jun 26;16(13):2261. doi: 10.3390/ijerph16132261.

Abstract

A rapid and continuous growth of silver nanoparticles (AgNPs) via their precursor "silver nitrate" (AgNO) has increased their environmental risk because of their unsafe discharge into the surrounding environment. Both have damaging effects on plants and induce oxidative stress. In the present study, differential responses in the morpho-physiological and biochemical profiles of (L.) seedlings exposed to various doses of AgNPs and AgNO were studied. Both have forms of Ag accelerated the reactive oxygen species (ROS) production, which adversely affected the membrane stability as a result of their enhanced accumulation, and resulted in a significant reduction in growth, that is, root length, shoot length, fresh and dry biomass, and relative water content. AgNO possessed a higher degree of toxicity owing to its higher accumulation than AgNPs, and induced changes in the antioxidants' enzyme activity: superoxide dismutase (SOD), peroxidase (POD), catalases (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR) activity, as well as proline content, total phenolic, and total flavonoids contents (TFCs) under all tested treatments (mM). A decline in photosynthetic pigments such as total chlorophyll content and carotenoid content and alterations in quantum yield (Fv/Fm), photochemical (qP), and non-photochemical quenching (NPQ) indicated the blockage of the electron transport chain (ETC), which led to a significant inhibition of photosynthesis. Interestingly, seedlings exposed to AgNPs showed less damaging effects on (L.) seedlings, resulting in relatively lower oxidative stress in contrast to AgNO. Our results revealed that AgNO and AgNPs possessed differential phytotoxic effects on (L.) seedlings, including their mechanism of uptake, translocation, and action. The present findings may be useful in phytotoxic research to design strategies that minimize the adverse effects of AgNPs and AgNO on crops, especially in the agriculture sector.

摘要

银纳米粒子(AgNPs)通过其前体“硝酸银”(AgNO)的快速连续生长,因其不安全地排放到周围环境中而增加了其环境风险。两者都对植物有破坏性影响,并诱导氧化应激。在本研究中,研究了不同剂量的 AgNPs 和 AgNO 暴露对(L.)幼苗形态生理和生化特征的差异反应。两种形式的 Ag 都加速了活性氧(ROS)的产生,由于其积累增加,对膜稳定性产生了不利影响,导致生长显著减少,即根长、茎长、鲜重和干重以及相对水含量。AgNO 由于其积累量高于 AgNPs,因此具有更高的毒性,并且诱导抗氧化酶活性发生变化:超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、愈创木酚过氧化物酶(GPX)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性以及脯氨酸含量、总酚和总类黄酮含量(TFC)在所有测试处理(mM)下。光合色素如总叶绿素含量和类胡萝卜素含量的下降以及量子产率(Fv/Fm)、光化学(qP)和非光化学猝灭(NPQ)的变化表明电子传递链(ETC)受阻,导致光合作用受到显著抑制。有趣的是,与 AgNO 相比,暴露于 AgNPs 的幼苗对(L.)幼苗的破坏性影响较小,导致相对较低的氧化应激。我们的结果表明,AgNO 和 AgNPs 对(L.)幼苗具有不同的植物毒性作用,包括它们的吸收、转运和作用机制。本研究结果可能有助于设计减轻 AgNPs 和 AgNO 对作物不利影响的策略,特别是在农业领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fe/6651700/ce715ccea153/ijerph-16-02261-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验