Suppr超能文献

SynMyco 转座子:用于最小基因组高效转化的工程转座子载体。

SynMyco transposon: engineering transposon vectors for efficient transformation of minimal genomes.

机构信息

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.

Universitat Pompeu Fabra (UPF), Barcelona, Spain.

出版信息

DNA Res. 2019 Aug 1;26(4):327-339. doi: 10.1093/dnares/dsz012.

Abstract

Mycoplasmas are important model organisms for Systems and Synthetic Biology, and are pathogenic to a wide variety of species. Despite their relevance, many of the tools established for genome editing in other microorganisms are not available for Mycoplasmas. The Tn4001 transposon is the reference tool to work with these bacteria, but the transformation efficiencies (TEs) reported for the different species vary substantially. Here, we explore the mechanisms underlying these differences in four Mycoplasma species, Mycoplasma agalactiae, Mycoplasma feriruminatoris, Mycoplasma gallisepticum and Mycoplasma pneumoniae, selected for being representative members of each cluster of the Mycoplasma genus. We found that regulatory regions (RRs) driving the expression of the transposase and the antibiotic resistance marker have a major impact on the TEs. We then designed a synthetic RR termed SynMyco RR to control the expression of the key transposon vector elements. Using this synthetic RR, we were able to increase the TE for M. gallisepticum, M. feriruminatoris and M. agalactiae by 30-, 980- and 1036-fold, respectively. Finally, to illustrate the potential of this new transposon, we performed the first essentiality study in M. agalactiae, basing our study on more than 199,000 genome insertions.

摘要

支原体是系统生物学和合成生物学的重要模式生物,对多种物种具有致病性。尽管它们具有重要的相关性,但许多在其他微生物中建立的基因组编辑工具并不适用于支原体。Tn4001 转座子是用于研究这些细菌的参考工具,但不同物种的转化效率 (TE) 差异很大。在这里,我们探索了四种支原体(无乳支原体、费氏柠檬酸杆菌支原体、鸡毒支原体和肺炎支原体)中这些差异的机制,选择这四种支原体是因为它们分别代表了支原体属的每个聚类的代表性成员。我们发现,驱动转座酶和抗生素抗性标记表达的调节区 (RR) 对 TE 有重大影响。然后,我们设计了一种称为 SynMyco RR 的合成 RR 来控制关键转座子载体元件的表达。使用这种合成 RR,我们能够将鸡毒支原体、费氏柠檬酸杆菌支原体和无乳支原体的 TE 分别提高 30 倍、980 倍和 1036 倍。最后,为了说明这种新转座子的潜力,我们在无乳支原体中进行了首次必需性研究,我们的研究基于超过 199000 个基因组插入。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba40/6704405/a870b7bcc4a7/dsz012f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验