Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India.
Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India.
Vaccine. 2020 Feb 29;38 Suppl 1:A83-A92. doi: 10.1016/j.vaccine.2019.06.031. Epub 2019 Jul 2.
The unique genetic makeup and remarkable competency of Vibrio cholerae are the key factors that help the cholera pathogen adapt rapidly to adverse environmental conditions and resist the detrimental effect of antimicrobial agents. In the last few decades, V. cholerae that causes acute watery diarrhoeal disease cholera has emerged as a notorious multidrug resistant (MDR) enteric pathogen. Although chromosomal mutations can contribute to antimicrobial resistance (AMR), the frequent acquisition of extrachromosomal mobile genetic elements (MGEs) from closely/distantly related bacterial species are major players in V. cholerae drug resistance. Whole genome sequence analysis of clinical and environmental V. cholerae strains revealed that the genome of most of the recent isolates harbour integrating conjugative elements (ICEs), plasmids, superintegron, transposable elements and insertion sequences, which are the key carriers of genetic traits encoding antimicrobial resistance function. Different antimicrobial resistance genes identified in V. cholerae can contribute in antibiotic resistance by facilitating one of the following three mechanisms; (i) reduced permeability or active efflux of the antibiotics, (ii) alteration of the antibiotic targets by introducing post-transcriptional/translational modifications and (iii) hydrolysis or chemical modification of antibiotics. Here, we present an overview of the present insights on the emergence and mechanisms of AMR in V. cholerae.
霍乱弧菌独特的基因结构和卓越的能力是帮助病原体迅速适应不利环境条件和抵抗抗菌药物有害影响的关键因素。在过去几十年中,引起急性水样腹泻病霍乱的霍乱弧菌已成为一种臭名昭著的多药耐药(MDR)肠道病原体。虽然染色体突变可以导致抗菌药物耐药性(AMR),但频繁从密切/远缘细菌物种获得染色体外可移动遗传元件(MGEs)是霍乱弧菌耐药性的主要因素。对临床和环境分离的霍乱弧菌菌株的全基因组序列分析表明,最近分离的大多数菌株的基因组都含有整合性 conjugative elements(ICEs)、质粒、超级整合子、转座元件和插入序列,它们是编码抗菌药物耐药性功能的遗传特征的关键载体。霍乱弧菌中鉴定出的不同抗菌药物耐药基因可以通过以下三种机制之一促进抗生素耐药性的产生:(i)减少抗生素的通透性或主动外排,(ii)通过引入转录后/翻译后修饰改变抗生素靶标,以及(iii)水解或化学修饰抗生素。在这里,我们概述了霍乱弧菌中 AMR 出现和机制的最新研究进展。