Suppr超能文献

能量受限状态下分枝杆菌细胞的生理学和代谢洞察。

Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.

机构信息

Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India.

Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India

出版信息

J Bacteriol. 2019 Sep 6;201(19). doi: 10.1128/JB.00210-19. Print 2019 Oct 1.

Abstract

, a bacterium that causes tuberculosis, poses a serious threat, especially due to the emergence of drug-resistant strains. and other mycobacterial species, such as , are known to generate an inadequate amount of energy by substrate-level phosphorylation and mandatorily require oxidative phosphorylation (OXPHOS) for their growth and metabolism. Hence, antibacterial drugs, such as bedaquiline, targeting the multisubunit ATP synthase complex, which is required for OXPHOS, have been developed with the aim of eliminating pathogenic mycobacteria. Here, we explored the influence of suboptimal OXPHOS on the physiology and metabolism of harbors two identical copies of , which codes for the β subunit of ATP synthase. We show that upon deletion of one copy of ( Δ), synthesizes smaller amounts of ATP and enters into an energy-compromised state. The mutant displays remarkable phenotypic and physiological differences from the wild type, such as respiratory slowdown, reduced biofilm formation, lesser amounts of cell envelope polar lipids, and increased antibiotic sensitivity compared to the wild type. Additionally, Δ overexpresses genes belonging to the dormancy operon, the β-oxidation pathway, and the glyoxylate shunt, suggesting that the mutant adapts to a low energy state by switching to alternative pathways to produce energy. Interestingly, Δ shows significant phenotypic, metabolic, and physiological similarities with bedaquiline-treated wild-type We believe that the identification and characterization of key metabolic pathways functioning during an energy-compromised state will enhance our understanding of bacterial adaptation and survival and will open newer avenues in the form of drug targets that may be used in the treatment of mycobacterial infections. generates an inadequate amount of energy by substrate-level phosphorylation and mandatorily requires oxidative phosphorylation (OXPHOS) for its growth and metabolism. Here, we explored the influence of suboptimal OXPHOS on physiology and metabolism. harbors two identical copies of the gene, which codes for the ATP synthase β subunit. Here, we carried out the deletion of only one copy of in to understand the bacterial survival response in an energy-deprived state. Δ shows remarkable phenotypic, metabolic, and physiological differences from the wild type. Our study thus establishes Δ as an energy-compromised mycobacterial strain, highlights the importance of ATP synthase in mycobacterial physiology, and further paves the way for the identification of novel antimycobacterial drug targets.

摘要

结核分枝杆菌是一种引起结核病的细菌,它构成了严重的威胁,尤其是由于耐药菌株的出现。分枝杆菌和其他分枝杆菌物种,如 ,通过底物水平磷酸化产生的能量不足,必须进行氧化磷酸化 (OXPHOS) 才能生长和代谢。因此,已经开发了针对多亚基 ATP 合酶复合物的抗菌药物,如贝达喹啉,该复合物是 OXPHOS 所必需的,旨在消除致病性分枝杆菌。在这里,我们研究了亚最佳 OXPHOS 对 的生理和代谢的影响, 含有两个相同的 基因拷贝,该基因编码 ATP 合酶的β亚基。我们表明,当一个拷贝的 (Δ)缺失时, 合成的 ATP 量减少,并进入能量受损状态。与野生型相比,突变体表现出明显的表型和生理差异,例如呼吸减慢、生物膜形成减少、细胞包膜极性脂质减少以及对抗生素的敏感性增加。此外, Δ过表达属于休眠操纵子、β-氧化途径和乙醛酸支路的基因,表明突变体通过切换到替代途径产生能量来适应低能量状态。有趣的是, Δ与贝达喹啉处理的野生型 表现出显著的表型、代谢和生理相似性。我们相信,确定和表征在能量受损状态下发挥作用的关键代谢途径将增强我们对细菌适应和生存的理解,并为治疗分枝杆菌感染提供新的药物靶点。 通过底物水平磷酸化产生不足的能量,并强制要求氧化磷酸化 (OXPHOS) 来生长和代谢。在这里,我们探索了亚最佳 OXPHOS 对 生理和代谢的影响。 含有编码 ATP 合酶β亚基的 基因的两个相同拷贝。在这里,我们只删除了 中的一个拷贝,以了解在能量匮乏状态下细菌的生存反应。 Δ与野生型相比表现出显著的表型、代谢和生理差异。因此,我们的研究将 Δ确立为一种能量受损的分枝杆菌菌株,强调了 ATP 合酶在分枝杆菌生理学中的重要性,并为鉴定新的抗分枝杆菌药物靶点铺平了道路。

相似文献

1
Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
J Bacteriol. 2019 Sep 6;201(19). doi: 10.1128/JB.00210-19. Print 2019 Oct 1.
2
Understanding Metabolic Remodeling in to Overcome Energy Exigency and Reductive Stress Under Energy-Compromised State.
Front Microbiol. 2021 Sep 1;12:722229. doi: 10.3389/fmicb.2021.722229. eCollection 2021.
4
Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline.
Nature. 2021 Jan;589(7840):143-147. doi: 10.1038/s41586-020-3004-3. Epub 2020 Dec 9.
5
Inhibitors of energy metabolism interfere with antibiotic-induced death in mycobacteria.
J Biol Chem. 2019 Feb 8;294(6):1936-1943. doi: 10.1074/jbc.RA118.005732. Epub 2018 Dec 7.
6
Methylotrophy in Mycobacteria: Dissection of the Methanol Metabolism Pathway in Mycobacterium smegmatis.
J Bacteriol. 2018 Aug 10;200(17). doi: 10.1128/JB.00288-18. Print 2018 Sep 1.
7
Structure of the ATP synthase from provides targets for treating tuberculosis.
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2111899118.
8
Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis.
Tuberculosis (Edinb). 2018 Jan;108:56-63. doi: 10.1016/j.tube.2017.10.008. Epub 2017 Oct 25.
10
Mycobacterium smegmatis PrrAB two-component system influences triacylglycerol accumulation during ammonium stress.
Microbiology (Reading). 2018 Oct;164(10):1276-1288. doi: 10.1099/mic.0.000705. Epub 2018 Aug 7.

引用本文的文献

1
Nitrogen removal capability and mechanism of a novel low-temperature-tolerant simultaneous nitrification-denitrification bacterium AKD4.
Front Microbiol. 2024 Sep 10;15:1349152. doi: 10.3389/fmicb.2024.1349152. eCollection 2024.
4
6
Understanding Metabolic Remodeling in to Overcome Energy Exigency and Reductive Stress Under Energy-Compromised State.
Front Microbiol. 2021 Sep 1;12:722229. doi: 10.3389/fmicb.2021.722229. eCollection 2021.
7
Deciphering the mechanism of action of antitubercular compounds with metabolomics.
Comput Struct Biotechnol J. 2021 Jul 30;19:4284-4299. doi: 10.1016/j.csbj.2021.07.034. eCollection 2021.
8
Decoding the molecular properties of mycobacteriophage D29 Holin provides insights into Holin engineering.
J Virol. 2021 Apr 26;95(10). doi: 10.1128/JVI.02173-20. Epub 2021 Feb 24.
9
Deciphering the Role of Holin in Mycobacteriophage D29 Physiology.
Front Microbiol. 2020 May 8;11:883. doi: 10.3389/fmicb.2020.00883. eCollection 2020.

本文引用的文献

1
Methylotrophy in Mycobacteria: Dissection of the Methanol Metabolism Pathway in Mycobacterium smegmatis.
J Bacteriol. 2018 Aug 10;200(17). doi: 10.1128/JB.00288-18. Print 2018 Sep 1.
2
The FF-ATP Synthase β Subunit Is Required for Pathogenicity Due to Its Role in Carbon Flexibility.
Front Microbiol. 2018 May 23;9:1025. doi: 10.3389/fmicb.2018.01025. eCollection 2018.
3
Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery.
Pathogens. 2018 Feb 23;7(1):24. doi: 10.3390/pathogens7010024.
4
Exploiting the synthetic lethality between terminal respiratory oxidases to kill and clear host infection.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7426-7431. doi: 10.1073/pnas.1706139114. Epub 2017 Jun 26.
5
Targeting Energy Metabolism in , a New Paradigm in Antimycobacterial Drug Discovery.
mBio. 2017 Apr 11;8(2):e00272-17. doi: 10.1128/mBio.00272-17.
7
Turning the respiratory flexibility of Mycobacterium tuberculosis against itself.
Nat Commun. 2016 Aug 10;7:12393. doi: 10.1038/ncomms12393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验