Suppr超能文献

PTMProphet:用于贯穿蛋白质组学管道的快速准确的质量修饰定位。

PTMProphet: Fast and Accurate Mass Modification Localization for the Trans-Proteomic Pipeline.

机构信息

Institute for Systems Biology , Seattle , Washington 98008 , United States.

Stoller Biomarker Discovery Centre , University of Manchester , Manchester M13 9PL , U.K.

出版信息

J Proteome Res. 2019 Dec 6;18(12):4262-4272. doi: 10.1021/acs.jproteome.9b00205. Epub 2019 Jul 22.

Abstract

Spectral matching sequence database search engines commonly used on mass spectrometry-based proteomics experiments excel at identifying peptide sequence ions, and in addition, possible sequence ions carrying post-translational modifications (PTMs), but most do not provide confidence metrics for the exact localization of those PTMs when several possible sites are available. Localization is absolutely required for downstream molecular cell biology analysis of PTM function in vitro and in vivo. Therefore, we developed PTMProphet, a free and open-source software tool integrated into the Trans-Proteomic Pipeline, which reanalyzes identified spectra from any search engine for which pepXML output is available to provide localization confidence to enable appropriate further characterization of biologic events. Localization of any type of mass modification (e.g., phosphorylation) is supported. PTMProphet applies Bayesian mixture models to compute probabilities for each site/peptide spectrum match where a PTM has been identified. These probabilities can be combined to compute a global false localization rate at any threshold to guide downstream analysis. We describe the PTMProphet tool, its underlying algorithms, and demonstrate its performance on ground-truth synthetic peptide reference data sets, one previously published small data set, one new larger data set, and also on a previously published phosphoenriched data set where the correct sites of modification are unknown. Data have been deposited to ProteomeXchange with identifier PXD013210.

摘要

基于质谱的蛋白质组学实验中常用的光谱匹配序列数据库搜索引擎擅长识别肽序列离子,此外,还可以识别可能带有翻译后修饰 (PTM) 的序列离子,但大多数情况下,当有多个可能的位点时,这些数据库不会提供 PTM 确切定位的置信度指标。对于体外和体内 PTM 功能的下游分子细胞生物学分析,定位是绝对必要的。因此,我们开发了 PTMProphet,这是一个免费的开源软件工具,集成到 Trans-Proteomic Pipeline 中,它重新分析来自任何搜索引擎的已识别光谱,这些搜索引擎提供 pepXML 输出,以提供定位置信度,从而能够对生物事件进行适当的进一步特征描述。支持任何类型的质量修饰(例如磷酸化)的定位。PTMProphet 应用贝叶斯混合模型来计算已识别 PTM 的每个位点/肽谱匹配的概率。这些概率可以组合起来,以计算任何阈值下的全局错误定位率,以指导下游分析。我们描述了 PTMProphet 工具及其底层算法,并在地面真实合成肽参考数据集、一个以前发表的小数据集、一个新的更大数据集以及一个以前发表的磷酸化富集数据集上展示了其性能,在这些数据集中,修饰的正确位点是未知的。数据已被存入 ProteomeXchange,标识符为 PXD013210。

相似文献

1
PTMProphet: Fast and Accurate Mass Modification Localization for the Trans-Proteomic Pipeline.
J Proteome Res. 2019 Dec 6;18(12):4262-4272. doi: 10.1021/acs.jproteome.9b00205. Epub 2019 Jul 22.
3
PIPI2: Sensitive Tag-Based Database Search to Identify Peptides with Multiple Post-translational Modifications.
J Proteome Res. 2024 Jun 7;23(6):1960-1969. doi: 10.1021/acs.jproteome.3c00819. Epub 2024 May 21.
4
Computational refinement of post-translational modifications predicted from tandem mass spectrometry.
Bioinformatics. 2011 Mar 15;27(6):797-806. doi: 10.1093/bioinformatics/btr017. Epub 2011 Jan 22.
5
Non-parametric Bayesian approach to post-translational modification refinement of predictions from tandem mass spectrometry.
Bioinformatics. 2013 Apr 1;29(7):821-9. doi: 10.1093/bioinformatics/btt056. Epub 2013 Feb 17.
7
STRAP PTM: Software Tool for Rapid Annotation and Differential Comparison of Protein Post-Translational Modifications.
Curr Protoc Bioinformatics. 2013 Dec;44(1322):13.22.1-36. doi: 10.1002/0471250953.bi1322s44.
8
Enhanced Global Post-translational Modification Discovery with MetaMorpheus.
J Proteome Res. 2018 May 4;17(5):1844-1851. doi: 10.1021/acs.jproteome.7b00873. Epub 2018 Apr 2.
9
LuciPHOr: algorithm for phosphorylation site localization with false localization rate estimation using modified target-decoy approach.
Mol Cell Proteomics. 2013 Nov;12(11):3409-19. doi: 10.1074/mcp.M113.028928. Epub 2013 Aug 5.

引用本文的文献

1
Integrative analysis of lung adenocarcinoma across diverse ethnicities and exposures.
Cancer Cell. 2025 Jul 30. doi: 10.1016/j.ccell.2025.07.011.
2
Collagen hydroxylation couples NAD+/NADH dynamics to tumor dormancy and reactivation.
Res Sq. 2025 Jul 10:rs.3.rs-6986228. doi: 10.21203/rs.3.rs-6986228/v1.
3
Multiplexed phosphoproteomics of low cell numbers using SPARCE.
Commun Biol. 2025 Apr 26;8(1):666. doi: 10.1038/s42003-025-08068-x.
4
MSFragger-DDA+ enhances peptide identification sensitivity with full isolation window search.
Nat Commun. 2025 Apr 8;16(1):3329. doi: 10.1038/s41467-025-58728-z.
5
Proteomic Sensors for Quantitative, Multiplexed and Spatial Monitoring of Kinase Signaling.
Res Sq. 2025 Mar 27:rs.3.rs-6220494. doi: 10.21203/rs.3.rs-6220494/v1.
6
Optimization of Collagenase Proteomics for Improved Mass Spectrometry Imaging Peptide Identification.
Anal Chem. 2025 Apr 15;97(14):7672-7681. doi: 10.1021/acs.analchem.4c04818. Epub 2025 Mar 28.
7
Pupylation-Based Proximity Labeling Unravels a Comprehensive Protein and Phosphoprotein Interactome of the Arabidopsis TOR Complex.
Adv Sci (Weinh). 2025 May;12(19):e2414496. doi: 10.1002/advs.202414496. Epub 2025 Mar 24.
8
: A Comprehensive View of the Proteome.
J Proteome Res. 2025 Apr 4;24(4):1636-1648. doi: 10.1021/acs.jproteome.4c01020. Epub 2025 Mar 14.
9
Revisiting the Effect of Trypsin Digestion Buffers on Artificial Deamidation.
J Am Soc Mass Spectrom. 2025 Mar 5;36(3):457-462. doi: 10.1021/jasms.4c00389. Epub 2025 Jan 31.
10
Optimized Time-Segmented Acquisition Expands Peptide and Protein Identification in TIMS-TOF Pro Mass Spectrometry.
J Proteome Res. 2025 Feb 7;24(2):526-536. doi: 10.1021/acs.jproteome.4c00690. Epub 2025 Jan 22.

本文引用的文献

2
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
3
Accurate phosphorylation site localization using phospho-brackets.
Anal Chim Acta. 2017 Dec 15;996:38-47. doi: 10.1016/j.aca.2017.09.043. Epub 2017 Oct 17.
4
pSite: Amino Acid Confidence Evaluation for Quality Control of De Novo Peptide Sequencing and Modification Site Localization.
J Proteome Res. 2018 Jan 5;17(1):119-128. doi: 10.1021/acs.jproteome.7b00428. Epub 2017 Nov 21.
5
Evaluation of Parameters for Confident Phosphorylation Site Localization Using an Orbitrap Fusion Tribrid Mass Spectrometer.
J Proteome Res. 2017 Sep 1;16(9):3448-3459. doi: 10.1021/acs.jproteome.7b00337. Epub 2017 Aug 11.
6
The mzIdentML Data Standard Version 1.2, Supporting Advances in Proteome Informatics.
Mol Cell Proteomics. 2017 Jul;16(7):1275-1285. doi: 10.1074/mcp.M117.068429. Epub 2017 May 17.
7
MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics.
Nat Methods. 2017 May;14(5):513-520. doi: 10.1038/nmeth.4256. Epub 2017 Apr 10.
8
The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition.
Nucleic Acids Res. 2017 Jan 4;45(D1):D1100-D1106. doi: 10.1093/nar/gkw936. Epub 2016 Oct 18.
9
Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics.
J Proteome Res. 2016 Nov 4;15(11):4091-4100. doi: 10.1021/acs.jproteome.6b00445. Epub 2016 Sep 12.
10
Phosphoproteomics to Characterize Host Response During Influenza A Virus Infection of Human Macrophages.
Mol Cell Proteomics. 2016 Oct;15(10):3203-3219. doi: 10.1074/mcp.M116.057984. Epub 2016 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验