Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy.
Università Cattolica del Sacro Cuore, Istituto di Istologia ed Embriologia, Fondazione Policlinico Universitario A. Gemelli, Largo F. Vito 1, Rome 00168, Italy.
Neurobiol Dis. 2019 Oct;130:104532. doi: 10.1016/j.nbd.2019.104532. Epub 2019 Jul 11.
Cortical hyperexcitability is an early and intrinsic feature of Amyotrophic Lateral Sclerosis (ALS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Recently, we have demonstrated that layer V pyramidal neurons (PNs) in the primary motor cortex (M1) of one-month old (P30) G93A ALS mice display an early hyperexcitability status compared to Control mice. In order to investigate the time-dependent evolution of the cortical excitability in the G93A ALS model, here we have performed an electrophysiological and immunohistochemical study at three different mouse ages. M1 PNs from 14-days old (P14) G93A mice have shown no excitability alterations, while M1 PNs from 3-months old (P90) G93A mice have shown a hypoexcitability status, compared to Control mice. These age-dependent cortical excitability dysfunctions correlate with a similar time-dependent trend of the persistent sodium current (INa) amplitude alterations, suggesting that INa may play a crucial role in the G93A cortical excitability aberrations. Specifically, immunohistochemistry experiments have indicated that the expression level of the NaV1.6 channel, one of the voltage-gated Na channels mainly distributed within the central nervous system, varies in G93A primary motor cortex during disease progression, according to the excitability and INa alterations, but not in other cortical areas. Microfluorometry experiments, combined with electrophysiological recordings, have verified that P30 G93A PNs hyperexcitability is associated to a greater accumulation of intracellular calcium ([Ca]) compared to Control PNs, and that this difference is still present when G93A and Control PNs fire action potentials at the same frequency. These results suggest that [Ca] de-regulation in G93A PNs may contribute to neuronal demise and that the NaV1.6 channels could be a potential therapeutic target to ameliorate ALS disease progression.
皮层兴奋性过高是肌萎缩侧索硬化症(ALS)的早期内在特征,但这种关键神经元功能障碍的机制尚不清楚。最近,我们已经证明,与对照小鼠相比,一个月大(P30)G93A ALS 小鼠的初级运动皮层(M1)中第 V 层锥体神经元(PNs)表现出早期的过度兴奋状态。为了研究 G93A ALS 模型中皮层兴奋性的时间依赖性演变,我们在这里在三个不同的小鼠年龄进行了电生理和免疫组织化学研究。与对照小鼠相比,来自 14 天大(P14)G93A 小鼠的 M1 PNs 没有表现出兴奋性改变,而来自 3 个月大(P90)G93A 小鼠的 M1 PNs 表现出兴奋性降低。这些与年龄相关的皮层兴奋性功能障碍与持续钠电流(INa)幅度改变的相似时间依赖性趋势相关,表明 INa 可能在 G93A 皮层兴奋性异常中起关键作用。具体来说,免疫组织化学实验表明,在疾病进展过程中,NaV1.6 通道的表达水平发生变化,NaV1.6 通道是主要分布在中枢神经系统内的电压门控 Na 通道之一,根据兴奋性和 INa 的改变,而不是在其他皮质区域。微荧光计实验与电生理记录相结合,已经验证了与对照 PNs 相比,P30 G93A PNs 的过度兴奋与细胞内钙([Ca])的更大积累有关,并且当 G93A 和对照 PNs 以相同的频率发射动作电位时,这种差异仍然存在。这些结果表明,G93A PNs 中的[Ca]失调可能导致神经元死亡,并且 NaV1.6 通道可能是改善 ALS 疾病进展的潜在治疗靶标。