Suppr超能文献

差异变异分析可利用单细胞 RNA 测序数据检测肿瘤异质性。

Differential Variation Analysis Enables Detection of Tumor Heterogeneity Using Single-Cell RNA-Sequencing Data.

机构信息

McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland.

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland.

出版信息

Cancer Res. 2019 Oct 1;79(19):5102-5112. doi: 10.1158/0008-5472.CAN-18-3882. Epub 2019 Jul 23.

Abstract

Tumor heterogeneity provides a complex challenge to cancer treatment and is a critical component of therapeutic response, disease recurrence, and patient survival. Single-cell RNA-sequencing (scRNA-seq) technologies have revealed the prevalence of intratumor and intertumor heterogeneity. Computational techniques are essential to quantify the differences in variation of these profiles between distinct cell types, tumor subtypes, and patients to fully characterize intratumor and intertumor molecular heterogeneity. In this study, we adapted our algorithm for pathway dysregulation, Expression Variation Analysis (EVA), to perform multivariate statistical analyses of differential variation of expression in gene sets for scRNA-seq. EVA has high sensitivity and specificity to detect pathways with true differential heterogeneity in simulated data. EVA was applied to several public domain scRNA-seq tumor datasets to quantify the landscape of tumor heterogeneity in several key applications in cancer genomics such as immunogenicity, metastasis, and cancer subtypes. Immune pathway heterogeneity of hematopoietic cell populations in breast tumors corresponded to the amount of diversity present in the T-cell repertoire of each individual. Cells from head and neck squamous cell carcinoma (HNSCC) primary tumors had significantly more heterogeneity across pathways than cells from metastases, consistent with a model of clonal outgrowth. Moreover, there were dramatic differences in pathway dysregulation across HNSCC basal primary tumors. Within the basal primary tumors, there was increased immune dysregulation in individuals with a high proportion of fibroblasts present in the tumor microenvironment. These results demonstrate the broad utility of EVA to quantify intertumor and intratumor heterogeneity from scRNA-seq data without reliance on low-dimensional visualization. SIGNIFICANCE: This study presents a robust statistical algorithm for evaluating gene expression heterogeneity within pathways or gene sets in single-cell RNA-seq data.

摘要

肿瘤异质性给癌症治疗带来了复杂的挑战,是治疗反应、疾病复发和患者生存的关键组成部分。单细胞 RNA 测序 (scRNA-seq) 技术揭示了肿瘤内和肿瘤间异质性的普遍性。计算技术对于量化不同细胞类型、肿瘤亚型和患者之间这些谱之间差异的变化至关重要,以充分描述肿瘤内和肿瘤间分子异质性。在这项研究中,我们改编了我们的通路失调算法,表达变异分析 (EVA),以对 scRNA-seq 中基因集表达的差异变异进行多变量统计分析。EVA 对模拟数据中具有真实差异异质性的通路具有高灵敏度和特异性。EVA 应用于几个公共 scRNA-seq 肿瘤数据集,以量化癌症基因组学中几个关键应用中的肿瘤异质性全景,如免疫原性、转移和癌症亚型。乳腺癌肿瘤中造血细胞群体的免疫通路异质性与每个个体 T 细胞库中存在的多样性量相对应。与转移细胞相比,头颈部鳞状细胞癌 (HNSCC) 原发肿瘤中的细胞在多条通路上的异质性明显更大,这与克隆生长的模型一致。此外,HNSCC 基底原发性肿瘤中的通路失调差异巨大。在基底原发性肿瘤中,存在大量成纤维细胞的肿瘤微环境中个体的免疫失调增加。这些结果表明,EVA 具有广泛的用途,可以在不依赖低维可视化的情况下从 scRNA-seq 数据中定量肿瘤间和肿瘤内异质性。意义:本研究提出了一种稳健的统计算法,用于评估单细胞 RNA-seq 数据中通路或基因集中的基因表达异质性。

相似文献

1
Differential Variation Analysis Enables Detection of Tumor Heterogeneity Using Single-Cell RNA-Sequencing Data.
Cancer Res. 2019 Oct 1;79(19):5102-5112. doi: 10.1158/0008-5472.CAN-18-3882. Epub 2019 Jul 23.
2
Cell Heterogeneity Analysis in Single-Cell RNA-seq Data Using Mixture Exponential Graph and Markov Random Field Model.
Biomed Res Int. 2021 May 22;2021:9919080. doi: 10.1155/2021/9919080. eCollection 2021.
4
Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy.
Cancer Commun (Lond). 2020 Aug;40(8):329-344. doi: 10.1002/cac2.12078. Epub 2020 Jul 12.
5
Tumor Functional Heterogeneity Unraveled by scRNA-seq Technologies.
Trends Cancer. 2020 Jan;6(1):13-19. doi: 10.1016/j.trecan.2019.11.010. Epub 2020 Jan 3.
7
Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
Nucleic Acids Res. 2019 Dec 16;47(22):e143. doi: 10.1093/nar/gkz826.
8
A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors.
Nat Med. 2020 May;26(5):792-802. doi: 10.1038/s41591-020-0844-1. Epub 2020 May 11.
9
Detection of high variability in gene expression from single-cell RNA-seq profiling.
BMC Genomics. 2016 Aug 22;17 Suppl 7(Suppl 7):508. doi: 10.1186/s12864-016-2897-6.
10
Identifying cancer cells from calling single-nucleotide variants in scRNA-seq data.
Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae512.

引用本文的文献

1
Unravelling the Complexity of HNSCC Using Single-Cell Transcriptomics.
Cancers (Basel). 2024 Sep 25;16(19):3265. doi: 10.3390/cancers16193265.
2
Inhibition of Renin Expression Is Regulated by an Epigenetic Switch From an Active to a Poised State.
Hypertension. 2024 Sep;81(9):1869-1882. doi: 10.1161/HYPERTENSIONAHA.124.22886. Epub 2024 Jul 11.
3
Oncotree2vec - a method for embedding and clustering of tumor mutation trees.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i180-i188. doi: 10.1093/bioinformatics/btae214.
5
Unravelling cancer subtype-specific driver genes in single-cell transcriptomics data with CSDGI.
PLoS Comput Biol. 2023 Dec 14;19(12):e1011450. doi: 10.1371/journal.pcbi.1011450. eCollection 2023 Dec.
7
Application of single-cell RNA sequencing in head and neck squamous cell carcinoma.
Chin J Cancer Res. 2023 Aug 30;35(4):331-342. doi: 10.21147/j.issn.1000-9604.2023.04.01.
8
sccomp: Robust differential composition and variability analysis for single-cell data.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2203828120. doi: 10.1073/pnas.2203828120. Epub 2023 Aug 7.
10
CD8+ T cell trajectory subtypes decode tumor heterogeneity and provide treatment recommendations for hepatocellular carcinoma.
Front Immunol. 2022 Jul 27;13:964190. doi: 10.3389/fimmu.2022.964190. eCollection 2022.

本文引用的文献

1
Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification.
Neuron. 2019 Jun 19;102(6):1111-1126.e5. doi: 10.1016/j.neuron.2019.04.010. Epub 2019 May 22.
3
Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.
Cell. 2018 Aug 23;174(5):1293-1308.e36. doi: 10.1016/j.cell.2018.05.060. Epub 2018 Jun 28.
4
Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.
Cell. 2018 Jul 26;174(3):716-729.e27. doi: 10.1016/j.cell.2018.05.061. Epub 2018 Jun 28.
5
Harnessing Tumor Evolution to Circumvent Resistance.
Trends Genet. 2018 Aug;34(8):639-651. doi: 10.1016/j.tig.2018.05.007. Epub 2018 Jun 11.
6
Fibroblasts in the Tumor Microenvironment: Shield or Spear?
Int J Mol Sci. 2018 May 21;19(5):1532. doi: 10.3390/ijms19051532.
7
Digitizing omics profiles by divergence from a baseline.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):4545-4552. doi: 10.1073/pnas.1721628115. Epub 2018 Apr 16.
8
Single-Cell Transcriptomic Analysis of Tumor Heterogeneity.
Trends Cancer. 2018 Apr;4(4):264-268. doi: 10.1016/j.trecan.2018.02.003. Epub 2018 Mar 9.
9
Splice Expression Variation Analysis (SEVA) for inter-tumor heterogeneity of gene isoform usage in cancer.
Bioinformatics. 2018 Jun 1;34(11):1859-1867. doi: 10.1093/bioinformatics/bty004.
10
Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer.
Cell. 2017 Dec 14;171(7):1611-1624.e24. doi: 10.1016/j.cell.2017.10.044. Epub 2017 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验