Suppr超能文献

通过丝状伪足竞争突触形成因子实现连续的突触形成。

Serial Synapse Formation through Filopodial Competition for Synaptic Seeding Factors.

机构信息

Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Neuroscience Graduate Program, UT Southwestern Medical Center Dallas, Dallas, TX 75390, USA.

Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.

出版信息

Dev Cell. 2019 Aug 19;50(4):447-461.e8. doi: 10.1016/j.devcel.2019.06.014. Epub 2019 Jul 25.

Abstract

Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a "serial synapse formation" model, where at any time point only 1-2 "synaptogenic" filopodia suppress the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization, and reduced synapse formation. The failure to form synapses can cause the destabilization and secondary retraction of axon terminals. Our model provides a filopodial "winner-takes-all" mechanism that ensures the formation of an appropriate number of synapses.

摘要

在轴突寻路之后,生长锥从随机的丝状伪足探索转变为形成有限数量的突触。丝状伪足和突触组装的相互作用如何确保大脑中的稳健连接仍然是一个具有挑战性的问题。在这里,我们为发育中的果蝇大脑中的 R7 光感受器轴突开发了一种新的丝状伪足动力学 4D 分析方法和突触形成的基于数据的计算模型。我们的实时数据支持“串行突触形成”模型,即在任何时间点,只有 1-2 个“突触形成”丝状伪足通过竞争突触种子因子来抑制其他丝状伪足的突触能力。突触种子因子 Syd-1 和 Liprin-α 的缺失导致这种抑制的丧失、丝状伪足不稳定性和突触形成减少。未能形成突触会导致轴突末端的不稳定性和继发性回缩。我们的模型提供了一种丝状伪足“赢家通吃”机制,可确保形成适当数量的突触。

相似文献

1
Serial Synapse Formation through Filopodial Competition for Synaptic Seeding Factors.
Dev Cell. 2019 Aug 19;50(4):447-461.e8. doi: 10.1016/j.devcel.2019.06.014. Epub 2019 Jul 25.
5
Neurotrophin-dependent dendritic filopodial motility: a convergence on PI3K signaling.
J Neurosci. 2008 Jul 2;28(27):7006-12. doi: 10.1523/JNEUROSCI.0195-08.2008.
6
Three Drosophila liprins interact to control synapse formation.
J Neurosci. 2010 Nov 17;30(46):15358-68. doi: 10.1523/JNEUROSCI.1862-10.2010.
7
Loss of syd-1 from R7 neurons disrupts two distinct phases of presynaptic development.
J Neurosci. 2012 Dec 12;32(50):18101-11. doi: 10.1523/JNEUROSCI.1350-12.2012.
8
Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly.
Nat Neurosci. 2012 Sep;15(9):1219-26. doi: 10.1038/nn.3183. Epub 2012 Aug 5.
10
Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses.
Mol Cell Neurosci. 2006 May-Jun;32(1-2):37-48. doi: 10.1016/j.mcn.2006.02.001. Epub 2006 May 2.

引用本文的文献

1
Coordinated dynamics of excitatory and inhibitory synapse assembly.
bioRxiv. 2025 Jun 3:2025.06.02.657384. doi: 10.1101/2025.06.02.657384.
2
Sequential and independent probabilistic events regulate differential axon targeting during development in Drosophila melanogaster.
Nat Neurosci. 2025 May;28(5):998-1011. doi: 10.1038/s41593-025-01937-y. Epub 2025 May 7.
3
Intracellular protein-lipid interactions drive presynaptic assembly prior to neurexin recruitment.
Neuron. 2025 Mar 5;113(5):737-753.e6. doi: 10.1016/j.neuron.2024.12.017. Epub 2025 Jan 14.
4
Blobby is a synaptic active zone assembly protein required for memory in Drosophila.
Nat Commun. 2025 Jan 2;16(1):271. doi: 10.1038/s41467-024-55382-9.
6
Heterogeneity of synaptic connectivity in the fly visual system.
Nat Commun. 2024 Feb 21;15(1):1570. doi: 10.1038/s41467-024-45971-z.
7
Synaptic promiscuity in brain development.
Curr Biol. 2024 Feb 5;34(3):R102-R116. doi: 10.1016/j.cub.2023.12.037.
8
Biased cell adhesion organizes a circuit for visual motion integration.
bioRxiv. 2023 Dec 12:2023.12.11.571076. doi: 10.1101/2023.12.11.571076.
9
Isochronic development of cortical synapses in primates and mice.
Nat Commun. 2023 Dec 4;14(1):8018. doi: 10.1038/s41467-023-43088-3.

本文引用的文献

2
Syd-1 Has RhoGAP Activity That Is Required for Presynaptic Clustering of Bruchpilot/ELKS but Not Neurexin-1.
Genetics. 2018 Feb;208(2):705-716. doi: 10.1534/genetics.117.300538. Epub 2017 Dec 7.
4
Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material.
Neuron. 2017 Feb 8;93(3):632-645.e6. doi: 10.1016/j.neuron.2016.12.043. Epub 2017 Jan 26.
6
Molecular Remodeling of the Presynaptic Active Zone of Drosophila Photoreceptors via Activity-Dependent Feedback.
Neuron. 2015 May 6;86(3):711-25. doi: 10.1016/j.neuron.2015.03.046. Epub 2015 Apr 16.
7
SYD-1C, UNC-40 (DCC) and SAX-3 (Robo) function interdependently to promote axon guidance by regulating the MIG-2 GTPase.
PLoS Genet. 2015 Apr 15;11(4):e1005185. doi: 10.1371/journal.pgen.1005185. eCollection 2015 Apr.
8
Cellular and molecular mechanisms of synaptic specificity.
Annu Rev Cell Dev Biol. 2014;30:417-37. doi: 10.1146/annurev-cellbio-100913-012953. Epub 2014 Aug 15.
10
Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination.
Neuron. 2014 Jan 22;81(2):280-93. doi: 10.1016/j.neuron.2013.12.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验