Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Neuroscience Graduate Program, UT Southwestern Medical Center Dallas, Dallas, TX 75390, USA.
Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.
Dev Cell. 2019 Aug 19;50(4):447-461.e8. doi: 10.1016/j.devcel.2019.06.014. Epub 2019 Jul 25.
Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a "serial synapse formation" model, where at any time point only 1-2 "synaptogenic" filopodia suppress the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization, and reduced synapse formation. The failure to form synapses can cause the destabilization and secondary retraction of axon terminals. Our model provides a filopodial "winner-takes-all" mechanism that ensures the formation of an appropriate number of synapses.
在轴突寻路之后,生长锥从随机的丝状伪足探索转变为形成有限数量的突触。丝状伪足和突触组装的相互作用如何确保大脑中的稳健连接仍然是一个具有挑战性的问题。在这里,我们为发育中的果蝇大脑中的 R7 光感受器轴突开发了一种新的丝状伪足动力学 4D 分析方法和突触形成的基于数据的计算模型。我们的实时数据支持“串行突触形成”模型,即在任何时间点,只有 1-2 个“突触形成”丝状伪足通过竞争突触种子因子来抑制其他丝状伪足的突触能力。突触种子因子 Syd-1 和 Liprin-α 的缺失导致这种抑制的丧失、丝状伪足不稳定性和突触形成减少。未能形成突触会导致轴突末端的不稳定性和继发性回缩。我们的模型提供了一种丝状伪足“赢家通吃”机制,可确保形成适当数量的突触。