Suppr超能文献

微生物失调和多胺代谢作为胰腺癌早期检测的预测标志物。

Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer.

机构信息

Department of Surgery, University of Miami, Miami, FL, USA.

Department of Surgery, University of Minnesota, Minneapolis, MN, USA.

出版信息

Carcinogenesis. 2020 Jul 10;41(5):561-570. doi: 10.1093/carcin/bgz116.

Abstract

The lack of tools for early detection of pancreatic ductal adenocarcinoma (PDAC) is directly correlated with the abysmal survival rates in patients. In addition to several potential detection tools under active investigation, we tested the gut microbiome and its metabolic complement as one of the earliest detection tools that could be useful in patients at high risk for PDAC. We used a combination of 16s rRNA pyrosequencing and whole-genome sequencing of gut fecal microbiota in a genetically engineered PDAC murine model (KRASG12DTP53R172HPdxCre or KPC). Metabolic reconstruction of microbiome was done using the HUMAnN2 pipeline. Serum polyamine levels were measured from murine and patient samples using chromogenic assay. Our results showed a Proteobacterial and Firmicutes dominance in gut microbiota in early stages of PDAC development. Upon in silico reconstruction of active metabolic pathways within the altered microbial flora, polyamine and nucleotide biosynthetic pathways were significantly elevated. These metabolic products are known to be actively assimilated by the host and eventually utilized by rapidly dividing cells for proliferation validating their importance in the context of tumorigenesis. In KPC mice, as well as PDAC patients, we show significantly elevated serum polyamine concentrations. Therefore, at the early stages of tumorigenesis, there is a strong correlation between microbial changes and release of metabolites that foster host tumorigenesis, thereby fulfilling the 'vicious cycle hypothesis' of the role of microbiome in health and disease states. Our results provide a potential, precise, noninvasive tool for early detection of PDAC, which may result in improved outcomes.

摘要

胰腺导管腺癌 (PDAC) 的早期检测工具缺乏,直接导致患者的生存率极低。除了正在积极研究的几种潜在检测工具外,我们还测试了肠道微生物组及其代谢物作为最早的检测工具之一,这可能对 PDAC 高危患者有用。我们使用 16s rRNA 焦磷酸测序和肠道粪便微生物组的全基因组测序相结合,在基因工程 PDAC 小鼠模型 (KRASG12DTP53R172HPdxCre 或 KPC) 中进行测试。使用 HUMAnN2 管道对微生物组进行代谢重建。使用比色测定法从小鼠和患者样本中测量血清多胺水平。我们的结果显示,在 PDAC 发展的早期阶段,肠道微生物群中存在 Proteobacteria 和 Firmicutes 的优势。在对改变的微生物群落中活跃代谢途径进行计算机模拟重建后,多胺和核苷酸生物合成途径显著升高。这些代谢产物已知被宿主主动吸收,最终被快速分裂的细胞用于增殖,从而验证了它们在肿瘤发生中的重要性。在 KPC 小鼠以及 PDAC 患者中,我们显示血清多胺浓度显著升高。因此,在肿瘤发生的早期阶段,微生物变化与促进宿主肿瘤发生的代谢产物释放之间存在很强的相关性,从而满足了微生物组在健康和疾病状态中作用的“恶性循环假说”。我们的结果为 PDAC 的早期检测提供了一种潜在的、精确的、非侵入性的工具,可能会改善结果。

相似文献

2
Glucose metabolism during tumorigenesis in the genetic mouse model of pancreatic cancer.
Acta Diabetol. 2019 Sep;56(9):1013-1022. doi: 10.1007/s00592-019-01335-4. Epub 2019 Apr 15.
3
Microbiota Alterations and Their Association with Oncogenomic Changes in Pancreatic Cancer Patients.
Int J Mol Sci. 2021 Nov 30;22(23):12978. doi: 10.3390/ijms222312978.
5
Zeb1 in Stromal Myofibroblasts Promotes -Driven Development of Pancreatic Cancer.
Cancer Res. 2018 May 15;78(10):2624-2637. doi: 10.1158/0008-5472.CAN-17-1882. Epub 2018 Feb 28.
6
Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes.
Cell. 2019 Aug 8;178(4):795-806.e12. doi: 10.1016/j.cell.2019.07.008.
7
Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models.
Carcinogenesis. 2018 Jul 30;39(8):1068-1078. doi: 10.1093/carcin/bgy073.
8
The microbiota and microbiome in pancreatic cancer: more influential than expected.
Mol Cancer. 2019 May 20;18(1):97. doi: 10.1186/s12943-019-1008-0.
10
The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice.
Gut. 2016 Mar;65(3):476-86. doi: 10.1136/gutjnl-2014-308042. Epub 2015 Jan 16.

引用本文的文献

1
Gut microbiome and serum metabolome alterations in osteosarcoma patients.
Front Microbiol. 2025 Jul 17;16:1616603. doi: 10.3389/fmicb.2025.1616603. eCollection 2025.
2
Genetically proxied risk and protective factors for pancreatic cancer: a systematic review and meta-analysis of Mendelian randomization studies.
J Gastrointest Oncol. 2025 Jun 30;16(3):1233-1247. doi: 10.21037/jgo-2025-305. Epub 2025 Jun 27.
3
The human microbiota: a double-edged sword against the 'Sword of Damocles' in PDAC diagnosis and therapy.
Front Oncol. 2025 Jun 26;15:1519277. doi: 10.3389/fonc.2025.1519277. eCollection 2025.
4
Microbiological colonization of the pancreatic tumor affects postoperative complications and outcome after pancreatic surgery.
Front Cell Infect Microbiol. 2025 May 30;15:1521952. doi: 10.3389/fcimb.2025.1521952. eCollection 2025.
5
Microbiota-derived metabolites in tumorigenesis: mechanistic insights and therapeutic implications.
Front Pharmacol. 2025 May 15;16:1598009. doi: 10.3389/fphar.2025.1598009. eCollection 2025.
6
The gut microbiome and cancer: from tumorigenesis to therapy.
Nat Metab. 2025 May 6. doi: 10.1038/s42255-025-01287-w.
7
The dual role of gut microbiota in pancreatic cancer: new insights into onset and treatment.
Ther Adv Med Oncol. 2025 Mar 15;17:17588359251324882. doi: 10.1177/17588359251324882. eCollection 2025.
8
Relevance of oncobiome in breast cancer evolution in an Argentine cohort.
mSphere. 2025 Mar 25;10(3):e0059724. doi: 10.1128/msphere.00597-24. Epub 2025 Feb 10.
9
Uncovering polyamine biosynthesis in the gut microbiome and its alteration in inflammatory bowel disease.
Gut Microbes. 2025 Dec;17(1):2464225. doi: 10.1080/19490976.2025.2464225. Epub 2025 Feb 9.
10
Defective in intestinal epithelial cells links to altered fecal microbiota and metabolic shifts during pregnancy in mice.
Gut Microbes. 2024 Jan-Dec;16(1):2429267. doi: 10.1080/19490976.2024.2429267. Epub 2024 Dec 2.

本文引用的文献

1
Evaluating the Information Content of Shallow Shotgun Metagenomics.
mSystems. 2018 Nov 13;3(6). doi: 10.1128/mSystems.00069-18. eCollection 2018 Nov-Dec.
2
Gut microbiota, chemotherapy and the host: the influence of the gut microbiota on cancer treatment.
Ecancermedicalscience. 2018 Sep 5;12:868. doi: 10.3332/ecancer.2018.868. eCollection 2018.
4
Gut Microbiota Promotes Tumor Growth in Mice by Modulating Immune Response.
Gastroenterology. 2018 Jul;155(1):33-37.e6. doi: 10.1053/j.gastro.2018.04.001. Epub 2018 Apr 7.
5
Immunotherapy for Pancreatic Cancer: More Than Just a Gut Feeling.
Cancer Discov. 2018 Apr;8(4):386-388. doi: 10.1158/2159-8290.CD-18-0123.
6
The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression.
Cancer Discov. 2018 Apr;8(4):403-416. doi: 10.1158/2159-8290.CD-17-1134. Epub 2018 Mar 22.
7
The gut microbiota and immune checkpoint inhibitors.
Hum Vaccin Immunother. 2018;14(9):2178-2182. doi: 10.1080/21645515.2018.1442970. Epub 2018 Apr 9.
8
Dysbiosis of gut microbiota in promoting the development of colorectal cancer.
Gastroenterol Rep (Oxf). 2018 Feb;6(1):1-12. doi: 10.1093/gastro/gox031. Epub 2017 Oct 11.
9
Intratumoral bacteria may elicit chemoresistance by metabolizing anticancer agents.
Mol Cell Oncol. 2017 Dec 11;5(1):e1405139. doi: 10.1080/23723556.2017.1405139. eCollection 2018.
10
Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism.
Sci Adv. 2018 Jan 24;4(1):eaar2606. doi: 10.1126/sciadv.aar2606. eCollection 2018 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验