Suppr超能文献

皮质-脑桥通路在卒中模型大鼠训练诱导恢复中的动态相互作用。

Dynamic Interaction between Cortico-Brainstem Pathways during Training-Induced Recovery in Stroke Model Rats.

机构信息

Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medicine, Nagoya 467-8601, Japan.

Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.

出版信息

J Neurosci. 2019 Sep 11;39(37):7306-7320. doi: 10.1523/JNEUROSCI.0649-19.2019. Epub 2019 Aug 8.

Abstract

Reorganization of residual descending motor circuits underlies poststroke recovery. We previously clarified a causal relationship between the cortico-rubral tract and intensive limb use-induced functional recovery after internal capsule hemorrhage (ICH). However, other descending tracts, such as the cortico-reticular tract, might also be involved in rehabilitation-induced compensation. To investigate whether rehabilitation-induced recovery after ICH involves a shift in the compensatory circuit from the cortico-rubral tract to the cortico-reticular tract, we established loss of function of the cortico-rubral tract or/and cortico-reticular tract using two sets of viral vectors comprising the Tet-on system and designer receptors exclusively activated by the designer drug system. We used an ICH model that destroyed almost 60% of the corticofugal fibers. Anterograde tracing in rehabilitated rats revealed abundant sprouting of axons from the motor cortex in the red nucleus but not in the medullary reticular formation during the early phase of recovery. This primary contribution of the cortico-rubral tract was demonstrated by its selective blockade, whereas selective cortico-reticular tract silencing had little effect. Interestingly, cortico-rubral tract blockade from the start of rehabilitation induced an obvious increase of axon sprouting in the reticular formation with substantial functional recovery. Additional cortico-reticular tract silencing under the cortico-rubral tract blockade significantly worsened the recovered forelimb function. Furthermore, the alternative recruitment of the cortico-reticular tract was gradually induced by intensive limb use under cortico-rubral tract blockade, in which cortico-reticular tract silencing caused an apparent motor deficit. These findings indicate that individual cortico-brainstem pathways have dynamic compensatory potency to support rehabilitative functional recovery after ICH. This study aimed to clarify the interaction between the cortico-rubral and the cortico-reticular tract during intensive rehabilitation and functional recovery after capsular stroke. Pathway-selective disturbance by two sets of viral vectors revealed that the cortico-rubral tract was involved in rehabilitation-induced recovery of forelimb function from an early phase after internal capsule hemorrhage, but that the cortico-reticular tract was not. The sequential disturbance of both tracts revealed that the cortico-reticular tract was recruited and involved in rehabilitation-induced recovery when the cortico-rubral tract failed to function. Our data demonstrate a dynamic compensatory action of individual cortico-brainstem pathways for recovery through poststroke rehabilitation.

摘要

梗死后运动通路的重组是恢复的基础。我们之前阐明了皮质-红核束与内囊出血(ICH)后强化肢体使用诱导的功能恢复之间的因果关系。然而,其他下行束,如皮质网状束,也可能参与康复诱导的代偿。为了研究 ICH 后康复诱导的恢复是否涉及从皮质-红核束到皮质网状束的补偿回路的转变,我们使用了两套包含 Tet-on 系统和仅由设计药物系统激活的设计受体的病毒载体来建立皮质-红核束或/和皮质网状束的功能丧失。我们使用了一种破坏皮质传出纤维近 60%的 ICH 模型。在康复大鼠的顺行追踪中,在恢复的早期阶段,大量来自运动皮层的轴突在红核中发芽,但不在延髓网状结构中发芽。通过选择性阻断证实了皮质-红核束的这种主要贡献,而选择性皮质网状束沉默则没有效果。有趣的是,从康复开始阻断皮质-红核束会导致网状结构中的轴突发芽明显增加,并伴有显著的功能恢复。在皮质-红核束阻断下进一步沉默皮质网状束会显著恶化恢复的前肢功能。此外,在皮质-红核束阻断下,密集的肢体使用会逐渐诱导皮质网状束的替代募集,其中皮质网状束沉默会导致明显的运动缺陷。这些发现表明,个体皮质-脑干通路具有动态代偿能力,可支持 ICH 后康复性功能恢复。本研究旨在阐明皮质-红核束和皮质网状束在 capsular 卒中后的强化康复和功能恢复期间的相互作用。通过两套病毒载体进行的通路选择性干扰表明,皮质-红核束参与了内囊出血后早期的前肢功能康复诱导恢复,但皮质网状束不参与。两条通路的顺序干扰表明,当皮质-红核束无法发挥作用时,皮质网状束被募集并参与康复诱导的恢复。我们的数据证明了个体皮质-脑干通路通过卒中后康复具有动态代偿作用。

相似文献

1
Dynamic Interaction between Cortico-Brainstem Pathways during Training-Induced Recovery in Stroke Model Rats.
J Neurosci. 2019 Sep 11;39(37):7306-7320. doi: 10.1523/JNEUROSCI.0649-19.2019. Epub 2019 Aug 8.
4
Differential involvement of rubral branches in chronic capsular and pontine stroke.
Neuroimage Clin. 2019;24:102090. doi: 10.1016/j.nicl.2019.102090. Epub 2019 Nov 12.
5
Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke.
Neuroscience. 2016 Dec 17;339:338-362. doi: 10.1016/j.neuroscience.2016.10.008. Epub 2016 Oct 8.
6
Compensatory sprouting and impulse rerouting after unilateral pyramidal tract lesion in neonatal rats.
J Neurosci. 2000 Sep 1;20(17):6561-9. doi: 10.1523/JNEUROSCI.20-17-06561.2000.
7
Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.
Front Neural Circuits. 2017 Jun 29;11:47. doi: 10.3389/fncir.2017.00047. eCollection 2017.

引用本文的文献

3
Developmental molecular signatures define cortico-brainstem circuit for skilled forelimb movement.
Res Sq. 2025 Mar 26:rs.3.rs-6150344. doi: 10.21203/rs.3.rs-6150344/v1.
4
The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents.
Front Neural Circuits. 2025 Mar 21;19:1566562. doi: 10.3389/fncir.2025.1566562. eCollection 2025.
6
Post-Stroke Recovery in Relation to Parvalbumin-Positive Interneurons and Perineuronal Nets.
Neurorehabil Neural Repair. 2025 Apr;39(4):286-296. doi: 10.1177/15459683241309567. Epub 2025 Jan 16.
8
Hyperactive delta isoform of PI3 kinase enables long-distance regeneration of adult rat corticospinal tract.
Mol Ther. 2025 Feb 5;33(2):752-770. doi: 10.1016/j.ymthe.2024.12.040. Epub 2025 Jan 1.
9
Corticospinal and corticoreticulospinal projections have discrete but complementary roles in chronic motor behaviors after stroke.
J Neurophysiol. 2024 Dec 1;132(6):1917-1936. doi: 10.1152/jn.00301.2024. Epub 2024 Nov 6.
10
Experience-driven competition in neural reorganization after stroke.
J Physiol. 2025 Feb;603(3):737-757. doi: 10.1113/JP285565. Epub 2024 Oct 30.

本文引用的文献

1
Excitatory rubral cells encode the acquisition of novel complex motor tasks.
Nat Commun. 2019 May 21;10(1):2241. doi: 10.1038/s41467-019-10223-y.
2
Hand Motor Recovery Following Extensive Frontoparietal Cortical Injury Is Accompanied by Upregulated Corticoreticular Projections in Monkey.
J Neurosci. 2018 Jul 11;38(28):6323-6339. doi: 10.1523/JNEUROSCI.0403-18.2018. Epub 2018 Jun 13.
3
Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion.
Nat Neurosci. 2018 Apr;21(4):576-588. doi: 10.1038/s41593-018-0093-5. Epub 2018 Mar 19.
4
Interactions Between the Corticospinal Tract and Premotor-Motor Pathways for Residual Motor Output After Stroke.
Stroke. 2017 Oct;48(10):2805-2811. doi: 10.1161/STROKEAHA.117.016834. Epub 2017 Sep 13.
5
Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions.
Front Neuroanat. 2017 Aug 2;11:65. doi: 10.3389/fnana.2017.00065. eCollection 2017.
7
Contribution of propriospinal neurons to recovery of hand dexterity after corticospinal tract lesions in monkeys.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):604-609. doi: 10.1073/pnas.1610787114. Epub 2017 Jan 3.
9
The differential contributions of the parvocellular and the magnocellular subdivisions of the red nucleus to skilled reaching in the rat.
Neuroscience. 2015 Jun 4;295:48-57. doi: 10.1016/j.neuroscience.2015.03.027. Epub 2015 Mar 23.
10
Early constraint-induced movement therapy promotes functional recovery and neuronal plasticity in a subcortical hemorrhage model rat.
Behav Brain Res. 2015 May 1;284:158-66. doi: 10.1016/j.bbr.2015.02.022. Epub 2015 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验