Suppr超能文献

解析多能性:基因筛选以探究多能性的获得、维持和退出。

Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency.

机构信息

Sloan Kettering Institute, New York, New York.

Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York.

出版信息

Wiley Interdiscip Rev Syst Biol Med. 2020 Jan;12(1):e1464. doi: 10.1002/wsbm.1464. Epub 2019 Aug 13.

Abstract

Pluripotent stem cells have the ability to unlimitedly self-renew and differentiate to any somatic cell lineage. A number of systems biology approaches have been used to define this pluripotent state. Complementary to systems level characterization, genetic screens offer a unique avenue to functionally interrogate the pluripotent state and identify the key players in pluripotency acquisition and maintenance, exit of pluripotency, and lineage differentiation. Here we review how genetic screens have helped us decode pluripotency regulation. We will summarize results from RNA interference (RNAi) based screens, discuss recent advances in CRISPR/Cas-based genetic perturbation methods, and how these advances have made it possible to more comprehensively interrogate pluripotency and differentiation through genetic screens. Such investigations will not only provide a better understanding of this unique developmental state, but may enhance our ability to use pluripotent stem cells as an experimental model to study human development and disease progression. Functional interrogation of pluripotency also provides a valuable roadmap for utilizing genetic perturbation to gain systems level understanding of additional cellular states, from later stages of development to pathological disease states. This article is categorized under: Developmental Biology > Stem Cell Biology and Regeneration Developmental Biology > Developmental Processes in Health and Disease Biological Mechanisms > Cell Fates.

摘要

多能干细胞具有无限自我更新和分化为任何体细胞谱系的能力。已经有许多系统生物学方法被用于定义这种多能状态。除了系统水平的特征描述,遗传筛选提供了一种独特的途径,可以从功能上研究多能状态,并确定多能性获得和维持、多能性退出和谱系分化中的关键因素。在这里,我们回顾了遗传筛选如何帮助我们解码多能性调控。我们将总结基于 RNA 干扰 (RNAi) 的筛选结果,讨论最近基于 CRISPR/Cas 的遗传扰动方法的进展,以及这些进展如何使通过遗传筛选更全面地研究多能性和分化成为可能。这些研究不仅将提供对这种独特发育状态的更好理解,而且可能增强我们利用多能干细胞作为实验模型来研究人类发育和疾病进展的能力。多能性的功能研究也为利用遗传干扰获得对额外细胞状态的系统水平理解提供了有价值的路线图,这些细胞状态包括发育的后期阶段到病理疾病状态。本文属于以下分类: 发育生物学 > 干细胞生物学与再生 发育生物学 > 健康和疾病中的发育过程 生物学机制 > 细胞命运。

相似文献

1
Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency.
Wiley Interdiscip Rev Syst Biol Med. 2020 Jan;12(1):e1464. doi: 10.1002/wsbm.1464. Epub 2019 Aug 13.
3
Pluripotency maintenance mechanism of embryonic stem cells and reprogramming.
Int J Hematol. 2010 Apr;91(3):360-72. doi: 10.1007/s12185-010-0517-9. Epub 2010 Feb 16.
4
Pluripotent states of human embryonic stem cells.
Cell Reprogram. 2015 Feb;17(1):1-6. doi: 10.1089/cell.2014.0061. Epub 2014 Nov 13.
6
Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency.
J Cell Sci. 2012 Dec 15;125(Pt 24):6094-104. doi: 10.1242/jcs.113019. Epub 2012 Oct 17.
8
Ex uno plures: molecular designs for embryonic pluripotency.
Physiol Rev. 2015 Jan;95(1):245-95. doi: 10.1152/physrev.00001.2014.
9
Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency.
Lab Invest. 2017 Oct;97(10):1133-1141. doi: 10.1038/labinvest.2017.87. Epub 2017 Sep 4.
10
Regulation of pluripotency and reprogramming by RNA binding proteins.
Curr Top Dev Biol. 2020;138:113-138. doi: 10.1016/bs.ctdb.2020.01.003. Epub 2020 Feb 25.

引用本文的文献

1
MorPhiC Consortium: towards functional characterization of all human genes.
Nature. 2025 Feb;638(8050):351-359. doi: 10.1038/s41586-024-08243-w. Epub 2025 Feb 12.
2
3
3D Enhancer-promoter networks provide predictive features for gene expression and coregulation in early embryonic lineages.
Nat Struct Mol Biol. 2024 Jan;31(1):125-140. doi: 10.1038/s41594-023-01130-4. Epub 2023 Dec 5.
7
CRISPR screening uncovers a central requirement for HHEX in pancreatic lineage commitment and plasticity restriction.
Nat Cell Biol. 2022 Jul;24(7):1064-1076. doi: 10.1038/s41556-022-00946-4. Epub 2022 Jul 4.
8
NMD is required for timely cell fate transitions by fine-tuning gene expression and regulating translation.
Genes Dev. 2022 Mar 1;36(5-6):348-367. doi: 10.1101/gad.347690.120. Epub 2022 Mar 3.
9
Defining the Pluripotent Marker Genes for Identification of Teleost Fish Cell Pluripotency During Reprogramming.
Front Genet. 2022 Feb 11;13:819682. doi: 10.3389/fgene.2022.819682. eCollection 2022.

本文引用的文献

1
FOXA2 Is Required for Enhancer Priming during Pancreatic Differentiation.
Cell Rep. 2019 Jul 9;28(2):382-393.e7. doi: 10.1016/j.celrep.2019.06.034.
2
Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation.
Nat Genet. 2019 Jun;51(6):999-1010. doi: 10.1038/s41588-019-0408-9. Epub 2019 May 20.
3
TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network.
Mol Cell. 2019 Jun 20;74(6):1148-1163.e7. doi: 10.1016/j.molcel.2019.03.025. Epub 2019 Apr 17.
4
5
Genome-Scale CRISPR Screens Identify Human Pluripotency-Specific Genes.
Cell Rep. 2019 Apr 9;27(2):616-630.e6. doi: 10.1016/j.celrep.2019.03.043.
7
Genome-Scale CRISPRa Screen Identifies Novel Factors for Cellular Reprogramming.
Stem Cell Reports. 2019 Apr 9;12(4):757-771. doi: 10.1016/j.stemcr.2019.02.010. Epub 2019 Mar 21.
8
Pooled extracellular receptor-ligand interaction screening using CRISPR activation.
Genome Biol. 2018 Nov 26;19(1):205. doi: 10.1186/s13059-018-1581-3.
9
Tracing the transitions from pluripotency to germ cell fate with CRISPR screening.
Nat Commun. 2018 Oct 16;9(1):4292. doi: 10.1038/s41467-018-06230-0.
10
CRISPR Activation Screens Systematically Identify Factors that Drive Neuronal Fate and Reprogramming.
Cell Stem Cell. 2018 Nov 1;23(5):758-771.e8. doi: 10.1016/j.stem.2018.09.003. Epub 2018 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验