Department of Surgery, College of Medicine, University of South Alabama, Mobile, Alabama.
Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama.
J Surg Res. 2020 Jan;245:273-280. doi: 10.1016/j.jss.2019.07.057. Epub 2019 Aug 14.
Transplantation of lungs procured after donation after circulatory death (DCD) is challenging because postmortem metabolic degradation may engender susceptibility to ischemia-reperfusion (IR) injury. Because oxidative mitochondrial DNA (mtDNA) damage has been linked to endothelial barrier disruption in other models of IR injury, here we used a fusion protein construct targeting the DNA repair 8-oxoguanine DNA glycosylase-1 (OGG1) to mitochondria (mtOGG1) to determine if enhanced repair of mtDNA damage attenuates endothelial barrier dysfunction after IR injury in a rat model of lung procurement after DCD.
Lungs excised from donor rats 1 h after cardiac death were cold stored for 2 h after which they were perfused ex vivo in the absence and presence of mt-OGG1 or an inactive mt-OGG1 mutant. Lung endothelial barrier function and mtDNA integrity were determined during and at the end of perfusion, respectively.
Mitochondria-targeted OGG1 attenuated indices of lung endothelial dysfunction incurred after a 1h post-mortem period. Oxidative lung tissue mtDNA damage as well as accumulation of proinflammatory mtDNA fragments in lung perfusate, but not nuclear DNA fragments, also were reduced by mitochondria-targeted OGG1. A repair-deficient mt-OGG1 mutant failed to protect lungs from the adverse effects of DCD procurement.
These findings suggest that endothelial barrier dysfunction in lungs procured after DCD is driven by mtDNA damage and point to strategies to enhance mtDNA repair in concert with EVLP as a means of alleviating DCD-related lung IR injury.
从心死亡后捐献(DCD)中获取的肺脏进行移植具有挑战性,因为死后代谢降解可能导致对缺血再灌注(IR)损伤的易感性。由于氧化线粒体 DNA(mtDNA)损伤与其他 IR 损伤模型中的内皮屏障破坏有关,因此在这里,我们使用一种靶向 DNA 修复 8-氧鸟嘌呤 DNA 糖苷酶-1(OGG1)的融合蛋白构建体靶向线粒体(mtOGG1),以确定增强 mtDNA 损伤修复是否可以减轻 DCD 后大鼠肺脏获取模型中的 IR 损伤后内皮屏障功能障碍。
从心脏死亡后 1 小时的供体大鼠中取出的肺脏在冷储存 2 小时后,在不存在和存在 mt-OGG1 或无活性 mt-OGG1 突变体的情况下进行离体灌注。分别在灌注过程中和结束时测定肺内皮屏障功能和 mtDNA 完整性。
线粒体靶向 OGG1 减轻了 1 小时死后期间发生的肺内皮功能障碍的指标。氧化的肺组织 mtDNA 损伤以及在肺灌流液中积累的促炎 mtDNA 片段,而不是核 DNA 片段,也被线粒体靶向 OGG1 减少。缺乏修复能力的 mt-OGG1 突变体不能保护肺免受 DCD 采集的不利影响。
这些发现表明,DCD 后获取的肺脏中的内皮屏障功能障碍是由 mtDNA 损伤驱动的,并指出了与 EVLP 一起增强 mtDNA 修复的策略,作为减轻 DCD 相关肺 IR 损伤的一种手段。