Department of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
Anal Chim Acta. 2019 Nov 12;1081:146-156. doi: 10.1016/j.aca.2019.07.028. Epub 2019 Jul 17.
Infectious outbreaks caused by foodborne pathogens such as E. coli O157:H7 are still imposing a heavy burden for global food safety, causing acute illnesses and significant industrial impact worldwide. Despite the growth of biosensors as a research field, continuous innovation on detection strategies, novel materials and enhanced limits of detection, most of the platforms developed at the laboratory scale never will get to meet the market. The use of aptamers as capture biomolecules has been proposed as a promising alternative to overcome the harsh environmental conditions of industrial manufacturing processes, and to enhance the performance under real, complex, conditions. In this work, we present the feasibility of using aptameric DNA sequences, covalently conjugated to 4-aminothiophenol-gold nanoparticle complexes for the sensitive and highly specific detection of E. coli O157:H7 via surface enhanced Raman spectroscopy (SERS) analysis. Low concentrations of E. coli O157:H7 were detected and quantified within 20 min in both pure culture (∼10 CFU mL) and ground beef samples (∼10 CFU mL). The SERS intensity response showed a strong negative linear correlation (r = 0.995) with increasing concentrations of E. coli O157:H7 (ranging from 10 to 10 CFU mL). High specificity was achieved at genus (L. monocytogenes, S. aureus S. typhimurium) species (E. coli B1201) and serotype (E. coli O55:H7) level, demonstrating with 95% of confidence that the interferent microorganisms tested generated a Raman signal response not significantly different from the background (p = 0.786). This work evaluates the incorporation of aptameric DNA sequences as bio capture molecules exclusively. The successful performance presented using non-modified citrate reduced GNPs, is promising for potential low-cost, high-throughput applications. The findings might be applied simultaneously to the detection of a wide variety of foodborne pathogens in a multiplexed fashion employing unique Raman probes and strain-specific aptamer sequences.
食源性病原体(如大肠杆菌 O157:H7)引起的传染性爆发仍然对全球食品安全造成沉重负担,导致全球范围内急性疾病和重大产业影响。尽管生物传感器作为一个研究领域不断发展,检测策略、新型材料和提高检测极限方面不断创新,但大多数在实验室规模上开发的平台永远无法满足市场需求。将适体用作捕获生物分子已被提议作为克服工业制造过程苛刻环境条件的有前途的替代方法,并在真实、复杂条件下提高性能。在这项工作中,我们展示了使用适体 DNA 序列的可行性,这些序列通过共价连接到 4-氨基硫酚-金纳米粒子复合物,通过表面增强拉曼光谱 (SERS) 分析对大肠杆菌 O157:H7 进行敏感和高度特异性检测。在纯培养物(约 10 CFU mL)和碎牛肉样品(约 10 CFU mL)中,在 20 分钟内检测到并定量了低浓度的大肠杆菌 O157:H7。SERS 强度响应与大肠杆菌 O157:H7 的浓度呈强烈负线性相关(r=0.995)(浓度范围为 10 到 10 CFU mL)。在属(单核细胞李斯特菌、金黄色葡萄球菌、鼠伤寒沙门氏菌)种(大肠杆菌 B1201)和血清型(大肠杆菌 O55:H7)水平上实现了高特异性,证明在 95%的置信水平下,测试的干扰微生物产生的拉曼信号响应与背景没有显著差异(p=0.786)。这项工作评估了仅将适体 DNA 序列作为生物捕获分子进行结合。使用未修饰的柠檬酸还原 GNPs 成功表现,对于潜在的低成本、高通量应用具有广阔前景。这些发现可以同时应用于通过使用独特的拉曼探针和菌株特异性适体序列以多重方式检测多种食源性病原体。