Suppr超能文献

神经网络中的深度学习能否改进 QSAR 模型?

Could deep learning in neural networks improve the QSAR models?

机构信息

DEIB, Politecnico di Milano, Milan, Italy.

Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Environmental Chemistry and Toxicology, Milan, Italy.

出版信息

SAR QSAR Environ Res. 2019 Sep;30(9):617-642. doi: 10.1080/1062936X.2019.1650827. Epub 2019 Aug 28.

Abstract

Assessing chemical toxicity is a multidisciplinary process, traditionally involving in vivo, in vitro and in silico tests. Currently, toxicological goal is to reduce new tests on chemicals, exploiting all information yet available. Recent advancements in machine learning and deep neural networks allow computers to automatically mine patterns and learn from data. This technology, applied to (Q)SAR model development, leads to discover by learning the structural-chemical-biological relationships and the emergent properties. Starting from Toxception, a deep neural network predicting activity from the chemical graph image, we designed SmilesNet, a recurrent neural network taking SMILES as the only input. We then integrated the two networks into C-Tox network to make the final classification. Results of our networks, trained on a ~20K molecule dataset with Ames test experimental values, match or even outperform the current state of the art. We also extract knowledge from the networks and compare it with the available mutagenic structural alerts. The advantage over traditional QSAR modelling is that our models automatically extract the features without using descriptors. Nevertheless, the model is successful if large numbers of examples are provided and computation is more complex than in classical methods.

摘要

评估化学毒性是一个多学科的过程,传统上涉及体内、体外和计算测试。目前,毒理学的目标是利用所有现有的信息,减少对新化学品的测试。机器学习和深度神经网络的最新进展使得计算机能够自动挖掘模式并从数据中学习。这项技术应用于(QSAR)模型开发,通过学习结构-化学-生物学关系和涌现性质来发现。从 Toxception 开始,这是一个从化学图形图像预测活性的深度神经网络,我们设计了 SmilesNet,这是一个仅将 SMILES 作为输入的循环神经网络。然后,我们将这两个网络集成到 C-Tox 网络中进行最终分类。我们的网络在一个约 20K 分子数据集上进行训练,使用 Ames 测试的实验值,结果与当前的最先进水平相匹配,甚至超过了。我们还从网络中提取知识,并将其与可用的致突变结构警报进行比较。与传统的 QSAR 建模相比,我们的模型自动提取特征而不使用描述符。然而,如果提供大量的示例,并且计算比经典方法更复杂,那么该模型就是成功的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验