Department of Medicine, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA.
Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.
J Neurooncol. 2019 Oct;145(1):11-22. doi: 10.1007/s11060-019-03274-0. Epub 2019 Aug 31.
Clinical trials directed at mechanistic target of rapamycin (mTOR) inhibition have yielded disappointing results in glioblastoma (GBM). A major mechanism of resistance involves the activation of a salvage pathway stimulating internal ribosome entry site (IRES)-mediated protein synthesis. PRMT5 activity has been implicated in the enhancement of IRES activity.
We analyzed the expression and activity of PRMT5 in response to mTOR inhibition in GBM cell lines and short-term patient cultures. To determine whether PRMT5 conferred resistance we used genetic and pharmacological approaches to ablate PRMT5 activity and assessed the effects on in vitro and in vivo sensitivity. Mutational analyses of the requisite IRES-trans-acting factor (ITAF), hnRNP A1 determined whether PRMT5-mediated methylation was necessary for ITAF RNA binding and IRES activity.
PRMT5 activity is stimulated in response to mTOR inhibitors. Knockdown or treatment with a PRMT5 inhibitor blocked IRES activity and sensitizes GBM cells. Ectopic expression of non-methylatable hnRNP A1 mutants demonstrated that methylation of either arginine residues 218 or 225 was sufficient to maintain IRES binding and hnRNP A1-dependent cyclin D1 or c-MYC IRES activity, however a double R218K/R225K mutant was unable to do so. The PRMT5 inhibitor EPZ015666 displayed synergistic anti-GBM effects in vitro and in a xenograft mouse model in combination with PP242.
These results demonstrate that PRMT5 activity is stimulated upon mTOR inhibition in GBM. Our data further support a signaling cascade in which PRMT5-mediated methylation of hnRNP A1 promotes IRES RNA binding and activation of IRES-mediated protein synthesis and resultant mTOR inhibitor resistance.
针对雷帕霉素靶蛋白(mTOR)抑制的临床试验在胶质母细胞瘤(GBM)中产生了令人失望的结果。一种主要的耐药机制涉及激活刺激内部核糖体进入位点(IRES)介导的蛋白质合成的挽救途径。PRMT5 的活性已被牵连到增强 IRES 活性。
我们分析了 mTOR 抑制在 GBM 细胞系和短期患者培养物中对 PRMT5 表达和活性的影响。为了确定 PRMT5 是否赋予了耐药性,我们使用遗传和药理学方法来消除 PRMT5 活性,并评估其对体外和体内敏感性的影响。必需的 IRES 反式作用因子(ITAF)hnRNP A1 的突变分析确定了 PRMT5 介导的甲基化是否对 ITAF RNA 结合和 IRES 活性是必需的。
PRMT5 活性在响应 mTOR 抑制剂时被刺激。敲低或用 PRMT5 抑制剂处理可阻断 IRES 活性并使 GBM 细胞敏感。外源性表达非甲基化 hnRNP A1 突变体表明,第 218 或 225 位精氨酸的甲基化足以维持 IRES 结合和 hnRNP A1 依赖性细胞周期蛋白 D1 或 c-MYC IRES 活性,但是双 R218K/R225K 突变体则不能。PRMT5 抑制剂 EPZ015666 与 PP242 联合在体外和异种移植小鼠模型中显示出协同的抗 GBM 作用。
这些结果表明,PRMT5 活性在 GBM 中 mTOR 抑制时被刺激。我们的数据进一步支持了一个信号级联反应,其中 PRMT5 介导的 hnRNP A1 甲基化促进 IRES RNA 结合和激活 IRES 介导的蛋白质合成,并导致 mTOR 抑制剂耐药。