Suppr超能文献

普遍存在于人类肠道细菌中的 CRISPR-Cas 系统揭示了对人类病毒组目录中噬菌体的超靶向性。

CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting against Phages in a Human Virome Catalog.

机构信息

Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.

Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Cell Host Microbe. 2019 Sep 11;26(3):325-335.e5. doi: 10.1016/j.chom.2019.08.008. Epub 2019 Sep 3.

Abstract

Bacteriophages are abundant within the human gastrointestinal tract, yet their interactions with gut bacteria remain poorly understood, particularly with respect to CRISPR-Cas immunity. Here, we show that the type I-C CRISPR-Cas system in the prevalent gut Actinobacterium Eggerthella lenta is transcribed and sufficient for specific targeting of foreign and chromosomal DNA. Comparative analyses of E. lenta CRISPR-Cas systems across (meta)genomes revealed 2 distinct clades according to cas sequence similarity and spacer content. We assembled a human virome database (HuVirDB), encompassing 1,831 samples enriched for viral DNA, to identify protospacers. This revealed matches for a majority of spacers, a marked increase over other databases, and uncovered "hyper-targeted" phage sequences containing multiple protospacers targeted by several E. lenta strains. Finally, we determined the positional mismatch tolerance of observed spacer-protospacer pairs. This work emphasizes the utility of merging computational and experimental approaches for determining the function and targets of CRISPR-Cas systems.

摘要

噬菌体在人类胃肠道中大量存在,但它们与肠道细菌的相互作用仍知之甚少,特别是在 CRISPR-Cas 免疫方面。在这里,我们表明,在流行的肠道放线菌 Eggerthella lenta 中的 I-C 型 CRISPR-Cas 系统被转录,并足以特异性靶向外来和染色体 DNA。对来自 (meta)基因组的 E. lenta CRISPR-Cas 系统的比较分析根据 cas 序列相似性和间隔子内容揭示了 2 个不同的分支。我们组装了一个人类病毒组数据库 (HuVirDB),包含 1831 个富含病毒 DNA 的样本,以识别原间隔子。这揭示了大多数间隔子的匹配,与其他数据库相比有显著增加,并发现了“超靶向”噬菌体序列,其中包含多个被多个 E. lenta 菌株靶向的原间隔子。最后,我们确定了观察到的间隔子-原间隔子对的位置错配容忍度。这项工作强调了合并计算和实验方法来确定 CRISPR-Cas 系统的功能和靶标的效用。

相似文献

1
CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting against Phages in a Human Virome Catalog.
Cell Host Microbe. 2019 Sep 11;26(3):325-335.e5. doi: 10.1016/j.chom.2019.08.008. Epub 2019 Sep 3.
2
The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.
mBio. 2017 Sep 19;8(5):e01397-17. doi: 10.1128/mBio.01397-17.
3
CRISPR-Cas provides limited phage immunity to a prevalent gut bacterium in gnotobiotic mice.
ISME J. 2023 Mar;17(3):432-442. doi: 10.1038/s41396-023-01358-4. Epub 2023 Jan 11.
5
Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
mBio. 2021 Mar 30;12(2):e03338-20. doi: 10.1128/mBio.03338-20.
6
Holding a grudge: persisting anti-phage CRISPR immunity in multiple human gut microbiomes.
RNA Biol. 2013 May;10(5):900-6. doi: 10.4161/rna.23929. Epub 2013 Feb 25.
7
Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs.
BMC Genomics. 2014 Mar 17;15(1):202. doi: 10.1186/1471-2164-15-202.
8
Dynamics of CRISPR-mediated virus-host interactions in the human gut microbiome.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae134.
9
Identification of Natural CRISPR Systems and Targets in the Human Microbiome.
Cell Host Microbe. 2021 Jan 13;29(1):94-106.e4. doi: 10.1016/j.chom.2020.10.010. Epub 2020 Nov 19.
10
Revealing bacteria-phage interactions in human microbiome through the CRISPR-Cas immune systems.
Front Cell Infect Microbiol. 2022 Sep 28;12:933516. doi: 10.3389/fcimb.2022.933516. eCollection 2022.

引用本文的文献

3
Produces a Cryptic Pro-inflammatory Lipid.
J Am Chem Soc. 2025 Jul 23;147(29):25180-25183. doi: 10.1021/jacs.5c08613. Epub 2025 Jul 12.
4
Discovering CRISPR-Cas system with self-processing pre-crRNA capability by foundation models.
Nat Commun. 2024 Nov 19;15(1):10024. doi: 10.1038/s41467-024-54365-0.
5
Phage diversity in One Health.
Essays Biochem. 2024 Dec 17;68(5):607-619. doi: 10.1042/EBC20240012.
7
Dynamics of CRISPR-mediated virus-host interactions in the human gut microbiome.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae134.
8
Gut phageome: challenges in research and impact on human microbiota.
Front Microbiol. 2024 Mar 22;15:1379382. doi: 10.3389/fmicb.2024.1379382. eCollection 2024.
9
Gut virome in inflammatory bowel disease and beyond.
Gut. 2024 Jan 5;73(2):350-360. doi: 10.1136/gutjnl-2023-330001.
10
Identification and characterization of two CRISPR/Cas systems associated with the mosquito microbiome.
Access Microbiol. 2023 Aug 11;5(8). doi: 10.1099/acmi.0.000599.v4. eCollection 2023.

本文引用的文献

1
Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria.
Nat Microbiol. 2020 Jan;5(1):56-66. doi: 10.1038/s41564-019-0596-1. Epub 2019 Nov 4.
2
Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism.
Science. 2019 Jun 14;364(6445). doi: 10.1126/science.aau6323.
3
Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks.
Nat Biotechnol. 2019 Jun;37(6):632-639. doi: 10.1038/s41587-019-0100-8. Epub 2019 May 6.
4
5
Discovery of widespread type I and type V CRISPR-Cas inhibitors.
Science. 2018 Oct 12;362(6411):240-242. doi: 10.1126/science.aau5174. Epub 2018 Sep 6.
6
Molecular mechanisms of CRISPR-Cas spacer acquisition.
Nat Rev Microbiol. 2019 Jan;17(1):7-12. doi: 10.1038/s41579-018-0071-7.
9
Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243.
Gut Microbes. 2018 Nov 2;9(6):523-539. doi: 10.1080/19490976.2018.1458180. Epub 2018 May 24.
10
Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays.
Mol Cell. 2018 Apr 5;70(1):48-59.e5. doi: 10.1016/j.molcel.2018.03.003. Epub 2018 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验